Article

Progesterone concentrations during estrous cycle of dairy cows exposed to electric and magnetic fields.

Department of Animal Science, McGill University, Sainte Anne de Bellevue, QC, Canada.
Bioelectromagnetics (Impact Factor: 2.02). 02/1998; 19(7):438-43. DOI: 10.1002/(SICI)1521-186X(1998)19:73.0.CO;2-2
Source: PubMed

ABSTRACT Sixteen multiparous nonpregnant lactating Holstein cows (each weighing 662 +/- 65 kg in 150.4 +/- 40 day of lactation) were confined to wooden metabolic cages with 12:12 h light:dark cycle during the experiment. The cows were divided into two sequences of eight cows each and exposed to electric and magnetic fields (EMF) in an exposure chamber. This chamber produced a vertical electric field of 10 kV/m and a uniform horizontal magnetic field of 30 microT at 60 Hz. One sequence was exposed for three estrous cycles of 24 to 27 days. During the first estrous cycle, the electric and magnetic fields were off; during the second estrous cycle, they were on; and during the third estrous cycle, they were off. The second sequence was also exposed for three 24 to 26 days estrous cycles, but the exposure to the fields was reversed (first estrous cycle, on; second estrous cycle, off; third estrous cycle, on). The length of each exposure period (21 to 27 days) varied according to the estrous cycle length. No differences were detected in plasma progesterone concentrations and area under the progesterone curve during estrous cycles between EMF nonexposed and exposed periods (2.28 +/- 0.17 and 2.25 +/- 0.17; and 24.5 +/- 1.9 vs. 26.4 +/- 1.9 ng/ml, respectively). However, estrous cycle length, determined by the presence of a functional corpus luteum detected by concentrations of progesterone equal to or more than 1 ng/ml plasma, was shorter in nonexposed cows than when they were exposed to EMF (22.0 +/- 0.9 vs. 25.3 +/- 1.4 days).

0 Bookmarks
 · 
67 Views
  • Source
    Iranian Journal of Medical Sciences. 01/2009;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, the widespread use of mobile phones has lead to a public debate about possible detrimental effects on human health. In spite of years of research, there is still a great controversy regarding the possibility of induction of any significant physiological effects in humans by microwave radiations emitted by mobile phones. This study aims to investigate the effects of electromagnetic fields induced by the Global System for Mobile communications (GSM) mobile phones on the Thyroid Stimulating Hormone (TSH) and thyroid hormones in humans. 77 healthy university students participated in this study. The levels of T3, T4 and TSH were measured by using appropriate enzyme-linked immunosorbent assay (ELISA) kits (Human, Germany). The average levels of T3, T4 and TSH in students who moderately used mobile phones were 1.25±0.27 ng/ml, 7.76±1.73 µg/dl and 4.25±2.12 µu/l respectively. The levels in the students who severely used mobile phones were 1.18±0.30, 7.75±1.14 and 3.75±2.05 respectively. In non-users, the levels were 1.15±0.27, 8.42±2.72 and 2.70±1.75, respectively. The difference among the levels of TSH in these 3 groups was statistically significant (P<0.05). As far as the study is concerned, this is the first human study to assess the associations between mobile phone use and alterations in the levels of TSH and thyroid hormones. Based on the findings, a higher than normal TSH level, low mean T4 and normal T3 concentrations in mobile users were observed. It seems that minor degrees of thyroid dysfunction with a compensatory rise in TSH may occur following excessive use of mobile phones. It may be concluded that possible deleterious effects of mobile microwaves on hypothalamic-pituitary-thyroid axis affects the levels of these hormones.
    Oman medical journal. 10/2009; 24(4):274-8.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The safety of human exposure to an ever-increasing number and diversity of electromagnetic field (EMF) sources both at work and at home has become a public health issue. To date, many in vivo and in vitro studies have revealed that EMF exposure can alter cellular homeostasis, endocrine function, reproductive function, and fetal development in animal systems. Reproductive parameters reported to be altered by EMF exposure include male germ cell death, the estrous cycle, reproductive endocrine hormones, reproductive organ weights, sperm motility, early embryonic development, and pregnancy success. At the cellular level, an increase in free radicals and [Ca(2+)]i may mediate the effect of EMFs and lead to cell growth inhibition, protein misfolding, and DNA breaks. The effect of EMF exposure on reproductive function differs according to frequency and wave, strength (energy), and duration of exposure. In the present review, the effects of EMFs on reproductive function are summarized according to the types of EMF, wave type, strength, and duration of exposure at cellular and organism levels.
    Clinical and experimental reproductive medicine. 03/2012; 39(1):1-9.