Protein folding activity of Hsp70 is modified differentially by the Hsp40 co-chaperones Sis1 and Ydj1

University of Alabama at Birmingham, Birmingham, Alabama, United States
Journal of Biological Chemistry (Impact Factor: 4.6). 11/1998; 273(43):27824-30. DOI: 10.1074/jbc.273.43.27824
Source: PubMed

ABSTRACT Specification of Hsp70 action in cellular protein metabolism may occur through the formation of specialized Hsp70:Hsp40 pairs. To test this model, we compared the ability of purified Sis1 and Ydj1 to regulate the ATPase and protein-folding activity of Hsp70 Ssa1 and Ssb1/2 proteins. Ydj1 and Sis1 could both functionally interact with Ssa1, but not the Ssb1/2 proteins, to refold luciferase. Interestingly, Ydj1:Ssa1 could promote up to four times more luciferase folding than Sis1:Ssa1. This functional difference was explored and could not be accounted for by differences in the ability of Sis1 and Ydj1 to regulate Ssa1 ATPase activity. Instead, differences in the chaperone function of Ydj1 and Sis1 were observed. Ydj1 was dramatically more effective than Sis1 at suppressing the thermally induced aggregation of luciferase. Paradoxically, Sis1 and Ydj1 could bind similar quantities of chemically denatured luciferase. The polypeptide binding domain of Sis1 was found to lie between residues 171-352 and correspond to its conserved carboxyl terminus. The conserved carboxyl terminus of Ydj1 is also known to participate in the binding of nonnative polypeptides. Thus, Ydj1 appears more efficient at assisting Ssa1 in folding luciferase because its contains a zinc finger-like region that is absent from Sis1. Ydj1 and Sis1 are structurally and functionally distinct Hsp40 proteins that can specify Ssa1 action by generating Hsp70:Hsp40 pairs that exhibit different chaperone activities.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlike other Hsp70 molecular chaperones, those of the eukaryotic cytosol have four residues, EEVD, at their C-termini. EEVD(Hsp70) binds adaptor proteins of the Hsp90 chaperone system and mitochondrial membrane preprotein receptors, thereby facilitating processing of Hsp70-bound clients through protein folding and translocation pathways. Among J-protein co-chaperones functioning in these pathways Sis1 is unique, as it also binds the EEVD(Hsp70) motif. However, little is known about the role of the Sis1:EEVD(Hsp70) interaction. We found that deletion of EEVD(Hsp70) abolished the ability of Sis1, but not the ubiquitous J-protein Ydj1, to partner with Hsp70 in in vitro protein refolding. Sis1 co-chaperone activity with Hsp70∆EEVD was restored upon substitution of a glutamic acid of the J-domain. Structural analysis revealed that this key glutamic acid, which is not present in Ydj1, forms a salt bridge with an arginine of the immediately adjacent glycine-rich region. Thus, restoration of Sis1 in vitro activity suggests that intramolecular interaction(s) between the J-domain and glycine-rich region controls co-chaperone activity, which is optimal only when Sis1 interacts with the EEVD(Hsp70) motif. Yet, we found that disruption of the Sis1:EEVD(Hsp70) interaction enhances the ability of Sis1 to substitute for Ydj1 in vivo. Our results are consistent with the idea that interaction of Sis1 with EEVD(Hsp70) minimizes transfer of Sis1-bound clients to Hsp70s that are primed for client transfer to folding and translocation pathways by their preassociation with EEVD-binding adaptor proteins. These interactions may be one means by which cells triage Ydj1- and Sis1-bound clients to productive and quality control pathways, respectively. Copyright © 2015. Published by Elsevier Ltd.
    Journal of Molecular Biology 02/2015; 14. DOI:10.1016/j.jmb.2015.02.007 · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heat shock proteins (Hsps) are highly conserved proteins and have cytoprotective role for maintaining cellular protein conformation. Hsps not only keep proteins in their native state but also involve in several essential biochemical process. This review summarizes structural properties of Hsps (Hsp70, Hsp40, Hsp90, Hsp100, Hsp60, sHsps, and Nucleotide Exchange Factors) and explains their roles in aging, apoptosis, cancer, neurodegeneration, cardio-vascular diseases, obesity and diabetes mellitus, and housekeeping.
    Frontiers in Protein and Peptide Sciences Volume 1, 1 edited by Ben Dunn, 07/2014: chapter Heat Shock Response Agents and the Diseases: pages 139-160 (22); Bentham., ISBN: 978-1-60805-863-1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Replication of amyloid-based yeast prions [PSI(+)], [URE3], and [PIN(+)] depends on the protein disaggregation machinery that includes Hsp104, Hsp70, and Hsp40 molecular chaperones. Yet, overexpressing Hsp104 cures cells of [PSI(+)] prions. An Hsp70 mutant (Ssa1-21p) antagonizes propagation of [PSI(+)] in a manner resembling elevated Hsp104. The major cytosolic Hsp40 Sis1p is the only Hsp40 required for replication of these prions, but its role in [PSI(+)] curing is unknown. Here we find that all nonessential functional regions of Sis1p are dispensable for [PSI(+)] propagation, suggesting that other Hsp40's might provide Hsp40 functions required for [PSI(+)] replication. Conversely, several Sis1p functions were important for promoting antiprion effects of both Ssa1-21p and Hsp104, which implies a link between the antiprion effects of these chaperones and suggests that Sis1p is a specific Hsp40 important for [PSI(+)] curing. These contrasting findings suggest that the functions of Hsp104 that are important for propagation and elimination of [PSI(+)] are either distinct or specified by different Hsp40's. This work also uncovered a growth inhibition caused by [PSI(+)] when certain functions of Sis1p were absent, suggesting that Sis1p protects cells from cytotoxicity caused by [PSI(+)] prions.
    Genetics 05/2011; 188(3):565-77. DOI:10.1534/genetics.111.129460 · 4.87 Impact Factor