Mammalian base excision repair by DNA polymerases delta and epsilon.

Institut für Veterinärbiochemie, Universität Zürich, Switzerland.
Oncogene (Impact Factor: 8.56). 09/1998; 17(7):835-43. DOI: 10.1038/sj.onc.1202001
Source: PubMed

ABSTRACT Two distinct pathways for completion of base excision repair (BER) have been discovered in eukaryotes: the DNA polymerase beta (Pol beta)-dependent short-patch pathway that involves the replacement of a single nucleotide and the long-patch pathway that entails the resynthesis of 2-6 nucleotides and requires PCNA. We have used cell extracts from Pol beta-deleted mouse fibroblasts to separate subfractions containing either Pol delta or Pol epsilon. These fractions were then tested for their ability to perform both short- and long-patch BER in an in vitro repair assay, using a circular DNA template, containing a single abasic site at a defined position. Remarkably, both Pol delta and Pol epsilon were able to replace a single nucleotide at the lesion site, but the repair reaction is delayed compared to single nucleotide replacement by Pol beta. Furthermore, our observations indicated, that either Pol delta and/or Pol epsilon participate in the long-patch BER. PCNA and RF-C, but not RP-A are required for this process. Our data show for the first time that Pol delta and/or Pol epsilon are directly involved in the long-patch BER of abasic sites and might function as back-up system for Pol beta in one-gap filling reactions.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Base excision repair (BER) is initiated by a DNA glycosylase and is completed by alternative routes, one of which requires proliferating cell nuclear antigen (PCNA) and other proteins also involved in DNA replication. We report that the major nuclear uracil-DNA glycosylase (UNG2) increases in S phase, during which it co-localizes with incorporated BrdUrd in replication foci. Uracil is rapidly removed from replicatively incorporated dUMP residues in isolated nuclei. Neutralizing antibodies to UNG2 inhibit this removal, indicating that UNG2 is the major uracil-DNA glycosylase responsible. PCNA and replication protein A (RPA) co-localize with UNG2 in replication foci, and a direct molecular interaction of UNG2 with PCNA (one binding site) and RPA (two binding sites) was demonstrated using two-hybrid assays, a peptide SPOT assay and enzyme-linked immunosorbent assays. These results demonstrate rapid post-replicative removal of incorporated uracil by UNG2 and indicate the formation of a BER complex that contains UNG2, RPA and PCNA close to the replication fork.
    The EMBO Journal 08/1999; 18(13):3834-44. · 9.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DNA polymerase δ (Pol δ4) is a heterotetrameric enzyme, whose p12 subunit is degraded in response to DNA damage, leaving behind a trimer (Pol δ3) with altered enzymatic characteristics that participates in gap filling during DNA repair. We demonstrate that CRL4Cdt2, a key regulator of cell cycle progression that targets replication licensing factors, also targets the p12 subunit of Pol δ4 in response to DNA damage and on entry into S phase. Evidence for the involvement of CRL4Cdt2 included demonstration that p12 possesses a PIP-degron, and that knockdown of the components of the CRL4Cdt2 complex inhibited the degradation of p12 in response to DNA damage. Analysis of p12 levels in synchronized cell populations showed that p12 is partially degraded in S phase, and that this is affected by knockdowns of CUL4A or CUL4B. Laser scanning cytometry of p12 and a mutant resistant to degradation showed that the reduction in p12 levels during S phase was prevented. Thus, CRL4Cdt2 also regulates the subunit composition of Pol δ during the cell cycle. These studies reveal a novel function of CRL4Cdt2, that of the direct regulation of DNA polymerase δ, adding to its known functions in the regulation of the licensing of replication origins and expanding the scope of its overall control of DNA replication. The formation of Pol δ3 in S phase as a normal aspect of cell cycle progression leads to the novel implications that it is involved in DNA replication as well as DNA repair.
    Journal of Biological Chemistry 08/2013; · 4.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hydrolytic deamination of DNA cytosine residues results in U/G mispairs, pre-mutagenic lesions threatening long-term genetic stability. Hence, DNA uracil repair is ubiquitous throughout all extant life forms and base excision repair, triggered by a uracil DNA glycosylase (UDG), is the mechanistic paradigm adopted, as it seems, by all bacteria and eukaryotes and a large fraction of archaea. However, members of the UDG superfamily of enzymes are absent from the extremely thermophilic archaeon Methanothermobacter thermautotrophicus DeltaH. This organism, as a hitherto unique case, initiates repair by direct strand incision next to the DNA-U residue, a reaction catalyzed by the DNA uridine endonuclease Mth212, an ExoIII homologue. To elucidate the detailed mechanism, in particular to identify the molecular partners contributing to this repair process, we reconstituted DNA uracil repair in vitro from only four purified enzymes of M. thermautotrophicus DeltaH. After incision at the 5'-side of a 2'-d-uridine residue by Mth212 DNA polymerase B (mthPolB) is able to take over the 3'-OH terminus and carry out repair synthesis generating a 5'-flap structure that is resolved by mthFEN, a 5'-flap endonuclease. Finally, DNA ligase seals the resulting nick. This defines mechanism and minimal enzymatic requirements of DNA-U repair in this organism.
    DNA repair 04/2010; 9(4):438-47. · 4.20 Impact Factor


Available from
May 23, 2014