Thermal independence of muscle tissue metabolism in the leatherback turtle, Dermochelys coriacea.

Department of Bioscience and Biotechnology, Drexel University, Philadelphia, PA 19104, USA.
Comparative Biochemistry and Physiology - Part A Molecular & Integrative Physiology (Impact Factor: 2.17). 08/1998; 120(3):399-403. DOI: 10.1016/S1095-6433(98)00024-5
Source: PubMed

ABSTRACT Metabolic rates of animal tissues typically increase with increasing temperature and thermoregulatory control in an animal is a regional or whole body process. Here we report that metabolic rates of isolated leatherback turtle (Dermochelys coriacea) pectoralis muscle are independent of temperature from 5-38 degrees C (Q10 = 1). Conversely, metabolic rates of green turtle (Chelonia mydas) pectoralis muscle exhibit a typical vertebrate response and increase with increasing temperature (Q10 = 1.3-3.0). Leatherbacks traverse oceanic waters with dramatic temperature differences during their migrations from sub-polar to equatorial regions. The metabolic stability of leatherback muscle effectively uncouples resting muscle metabolism from thermal constraints typical of other vertebrate tissues. Unique muscle physiology of leatherbacks has important implications for understanding vertebrate muscle function, and is another strong argument for preservation of this endangered species.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional hemostatic pathways are critical for the survival of all vertebrates and have been evolving for more than 400 million years. The overwhelming majority of studies of hemostasis in vertebrates have focused on mammals with very sparse attention paid to reptiles. There have been virtually no studies of the coagulation pathway in sea turtles whose ancestors date back to the Jurassic period. Sea turtles are often exposed to rapidly altered environmental conditions during diving periods. This may reduce their blood pH during prolonged hypoxic dives. This report demonstrates that five species of turtles possess only one branch of the mammalian coagulation pathway, the extrinsic pathway. Mixing studies of turtle plasmas with human factor-deficient plasmas indicate that the intrinsic pathway factors VIII and IX are present in turtle plasma. These two factors may play a significant role in supporting the extrinsic pathway by feedback loops. The intrinsic factors, XI and XII are not detected which would account for the inability of reagents to induce coagulation via the intrinsic pathway in vitro. The analysis of two turtle factors, factor II (prothrombin) and factor X, demonstrates that they are antigenically/functionally similar to the corresponding human factors. The turtle coagulation pathway responds differentially to both pH and temperature relative to each turtle species and relative to human samples. The coagulation time (prothrombin time) increases as the temperature decreases between 37 and 15 degrees C. The increased time follows a linear relationship, with similar slopes for loggerhead, Kemps ridley and hawksbill turtles as well as for human samples. Leatherback turtle samples show a dramatic nonlinear increased time below 23 degrees C, and green turtle sample responses were similar but less dramatic. All samples also showed increased prothrombin times as the pH decreased from 7.8 to 6.4, except for three turtle species. The prothrombin times decreased, to varying extents, in a linear fashion relative to reduced pH with the rate of change greatest in leatherbacks>green>loggerhead turtles. All studies were conducted with reagents developed for human samples which would impact on the quantitative results with the turtle samples, but are not likely to alter the qualitative results. These comparative studies of the coagulation pathway in sea turtles and humans could enhance our knowledge of structure/function relationships and evolution of coagulation factors.
    Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 09/2004; 138(4):399-406. · 2.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since 1943, a total of 40 leatherbacks have been documented in neritic and offshore waters of the Gulf of California, Mexico: 13 as fisheries by-catch, 11 in indigenous ceremonies, 8 coastal strandings, 4 at-sea sightings, 3 observed by fishing fleets, and 1 via satellite telemetry. Leatherback hatchlings were observed on 3 occasions in the northern Gulf of California. The range of curved carapace lengths for nonhatchling leatherbacks was 113 to 160 cm curved carapace length (mean = 139 ± 12 cm). All but 1 leatherback were reported between November and May, a period of cooler water temperatures for the region.
    Chelonian Conservation and Biology 01/2009; · 0.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Climate change is expected to have a number of impacts on biological communities including range extensions and contractions. Recent analyses of multidecadal data sets have shown such monotonic shifts in the distribution of plankton communities and various fish species, both groups for which there is a large amount of historical data on distribution. However, establishing the implications of climate change for the range of endangered species is problematic as historic data are often lacking. We therefore used a different approach to predict the implications of climate change for the range of the critically endangered planktivourous leatherback turtle (Dermochelys coriacea). We used long-term satellite telemetry to define the habitat utilization of this species. We show that the northerly distribution limit of this species can essentially be encapsulated by the position of the 15°C isotherm and that the summer position of this isotherm has moved north by 330 km in the North Atlantic in the last 17 years. Consequently, conservation measures will need to operate over ever-widening areas to accommodate this range extension.
    Global Change Biology 06/2006; 12(7):1330 - 1338. · 8.22 Impact Factor


Available from
May 28, 2014