Thermal independence of muscle tissue metabolism in the leatherback turtle, Dermochelys coriacea.

Department of Bioscience and Biotechnology, Drexel University, Philadelphia, PA 19104, USA.
Comparative Biochemistry and Physiology - Part A Molecular & Integrative Physiology (Impact Factor: 2.37). 08/1998; 120(3):399-403. DOI: 10.1016/S1095-6433(98)00024-5
Source: PubMed

ABSTRACT Metabolic rates of animal tissues typically increase with increasing temperature and thermoregulatory control in an animal is a regional or whole body process. Here we report that metabolic rates of isolated leatherback turtle (Dermochelys coriacea) pectoralis muscle are independent of temperature from 5-38 degrees C (Q10 = 1). Conversely, metabolic rates of green turtle (Chelonia mydas) pectoralis muscle exhibit a typical vertebrate response and increase with increasing temperature (Q10 = 1.3-3.0). Leatherbacks traverse oceanic waters with dramatic temperature differences during their migrations from sub-polar to equatorial regions. The metabolic stability of leatherback muscle effectively uncouples resting muscle metabolism from thermal constraints typical of other vertebrate tissues. Unique muscle physiology of leatherbacks has important implications for understanding vertebrate muscle function, and is another strong argument for preservation of this endangered species.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Many studies on risk assessment of pesticides on non-target organisms have been performed based on standardized protocols that reflect conditions in temperate climates. However, the responses of organisms to chemical compounds may differ according to latitude and thus predicting the toxicity of chemicals at different temperatures is an important factor to consider in risk assessment. The toxic effects of the pesticide carbaryl were evaluated at different temperature regimes, which are indicative of temperate and tropical climates and are relevant to climate change predictions or seasonal temperature fluctuations. Four standard organisms were used (Folsomia candida, Eisenia andrei; Triticum aestivum and Brassica rapa) and the effects were assessed using synergistic ratios, calculated from EC/LC50 values. When possible, the MIXTOX tool was used based on the reference model of independent action (IA) and possible deviations. A decrease on carbaryl toxicity at higher temperatures was found in F. candida reproduction, but when the mixtox tool was used no interactions between these stressors (Independent Action) was observed, so an additive response was suggested. Synergistic ratios showed a tendency to synergism at high temperatures for E. andrei and B. rapa and antagonism at low temperatures for both species. T. aestivum showed to be less affected than expected (antagonism), when exposed to both low and high temperatures. The results showed that temperature may increase the deleterious effects of carbaryl to non-target organisms, which is important considering both seasonal and latitude related differences, as well as the global climate change context.
    Ecotoxicology and Environmental Safety 05/2014; · 2.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A common, long-held belief is that metabolic rate drives the rates of various biological, ecological and evolutionary processes. Although this metabolic pacemaker view (as assumed by the recent, influential 'metabolic theory of ecology') may be true in at least some situations (e.g. those involving moderate temperature effects or physiological processes closely linked to metabolism, such as heartbeat and breathing rate), it suffers from several major limitations, including: (i) it is supported chiefly by indirect, correlational evidence (e.g. similarities between the body-size and temperature scaling of metabolic rate and that of other biological processes, which are not always observed) - direct, mechanistic or experimental support is scarce and much needed; (ii) it is contradicted by abundant evidence showing that various intrinsic and extrinsic factors (e.g. hormonal action and temperature changes) can dissociate the rates of metabolism, growth, development and other biological processes; (iii) there are many examples where metabolic rate appears to respond to, rather than drive the rates of various other biological processes (e.g. ontogenetic growth, food intake and locomotor activity); (iv) there are additional examples where metabolic rate appears to be unrelated to the rate of a biological process (e.g. ageing, circadian rhythms, and molecular evolution); and (v) the theoretical foundation for the metabolic pacemaker view focuses only on the energetic control of biological processes, while ignoring the importance of informational control, as mediated by various genetic, cellular, and neuroendocrine regulatory systems. I argue that a comprehensive understanding of the pace of life must include how biological activities depend on both energy and information and their environmentally sensitive interaction. This conclusion is supported by extensive evidence showing that hormones and other regulatory factors and signalling systems coordinate the processes of growth, metabolism and food intake in adaptive ways that are responsive to an organism's internal and external conditions. Metabolic rate does not merely dictate growth rate, but is coadjusted with it. Energy and information use are intimately intertwined in living systems: biological signalling pathways both control and respond to the energetic state of an organism. This review also reveals that we have much to learn about the temporal structure of the pace of life. Are its component processes highly integrated and synchronized, or are they loosely connected and often discordant? And what causes the level of coordination that we see? These questions are of great theoretical and practical importance.
    Biological reviews of the Cambridge Philosophical Society 05/2014; · 6.63 Impact Factor
  • Source
    Marine Ecology Progress Series 01/2002; 230:289-293. · 2.64 Impact Factor


Available from
May 28, 2014