Evaluation and comparison of dissolution data derived from different modified release dosage forms: an alternative method.

Temple University, School of Pharmacy, Department of Pharmaceutical Sciences, 3307 North Broad Street, Philadelphia, PA 19140, USA.
Journal of Controlled Release (Impact Factor: 7.26). 11/1998; 55(1):45-55. DOI: 10.1016/S0168-3659(98)00022-4
Source: PubMed

ABSTRACT Dissolution testing is an essential requirement for the development, establishment of in vitro dissolution and in vivo performance (IVIVR), registration and quality control of solid oral dosage forms. The objective of the present study was to investigate the effect of delivery system positioning in accordance with the USP 23-recommended dissolution methods and the proposed modification on drug release from controlled release systems having different operating release mechanisms, namely, swellable floatable, swellable sticking and osmotic pump. The delivery systems were evaluated by placing each dosage form either in the dissolution vessel in accordance with the USP 23 methods or over/below a designed ring/mesh device for achieving full surface exposure to the dissolution medium for sticking or floatable systems respectively. Results indicate that the overall release profiles from the sticking and floatable systems of theophylline are sensitive to their positioning in the dissolution vessel (P<0.05). Furthermore, release of diltiazem hydrochloride from the sticking system also demonstrated sensitivity (P<0.05). In contrast, the floatable dosage form of this latter drug with the application of a helical wire sinker, or when it was placed below the ring/mesh assembly, or by allowing the dosage form to float, did not show sensitivity (P>0.05) for the overall release behavior. This was attributed to the greater solubility of diltiazem hydrochloride (50% solubility in water at 25 degreesC) in comparison to theophylline which is a sparingly soluble drug (0.85% solubility in water at 25 degreesC). Drug release from the osmotic pump appeared to be identical under the given experimental conditions (P>0.05). Statistical analysis of data was performed by comparing the t50%, t70%, t90%; mean dissolution times (MDT50%, MDT70%, MDT90%); the "difference factor, f1" and "similarity factor, f2". It is concluded that the results derived from the application of the "similarity factor, f2" are superior to the individual time points (e.g. tx%) and MDTx% values in differentiating between overall release patterns or the border line release profile differences. It also became apparent that in the case of the swellable sticking systems full surface exposure to the dissolution medium results in greater release rate. For the osmotic pump the required osmotic pressure threshold necessary for constant rate drug delivery appears to have reached independent of the hydrodynamic conditions. A successful and more accurate evaluation of dissolution data can be derived when full surface exposure is considered and this can be accomplished by dissolution method modification with the aid of the designed ring/mesh assembly.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to produce microparticles with optimal aerodynamic diameter for deep lung delivery (i.e., 1-3μm) of a protein drug intended for systemic absorption, using a combination of generally regarded as safe (GRAS) excipients. Based on the preliminary experiments, mannitol, l-alanine, sodium alginate, chitosan and dipalmitoylphosphatidilcholine (DPPC) were chosen as excipients and human insulin as a model protein drug. Dry powders were prepared by spray-drying. Powders with varying yields (29-80%) and low tapped densities (0.22-0.38g/cm(3)) were obtained. Scanning electron microscopy (SEM) revealed distinctive particle morphologies among formulations from isolated spherical to highly folded particles. Aerodynamic properties were assessed by next generation impactor (NGI). Mass median aerodynamic diameter (MMAD) and fine particle fraction (FPF) ranged between 2.1 and 4.6μm and 46 and 81%, respectively. A comparative study of protein release from microparticles was conducted in vitro using an open membrane system with more than 50% cumulative release in all formulations which followed different kinetic models. Insulin's integrity was investigated by spectrofluorimetry and electrophoresis, and no tangible changes were observed in the structure of insulin. Of the formulations studied, the third, containing mannitol/sodium alginate/insulin/sodium citrate showed promising characteristics, optimal for systemic delivery of proteins via deep lung deposition.
    International Journal of Pharmaceutics 02/2014; · 3.99 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atorvastatin (ATV) is an antilipemic drug of great interest to the pharmaceutical industry. ATV does not appear in the monographs of Brazilian pharmacopoeia, and analytical methodologies for its determination have been validated. The chromatographic conditions used included: RP-18 column-octadecylsilane (250 x 4.6 mm, 5 mm), detection at 238 nm, mobile phase containing 0.1% phosphoric acid and acetonitrile (35:65% v/v), flow at 1.5 mL min-1, oven temperature at 30ºC, and injection volume of 10 mL. ATV is classified as a class II product, according to the biopharmaceutical classification system. As such, a dissolution test was proposed to evaluate pharmaceutical formulations on the market today, under the following conditions: water as a dissolution medium, 1000 mL as a volume, paddle apparatus at a rotation speed of 50 rpm, 80% (Q) in 15 minutes with UV spectrophotometer readings at 238 nm. In the pattern condition proposed as the ideal dissolution test, which appropriately differentiates amongst formulations, the generic product was not considered pharmaceutically equivalent; however, in other less differential dissolution methods, which also fall within appropriate legal parameters, this product could come to be regarded as generic.
    Brazilian Journal of Pharmaceutical Science 12/2012; 48(4):801-810. · 0.30 Impact Factor