Rapid amplification of a retrotransposon subfamily is evolving the mouse genome.

Department of Genetics, University of Pennsylvania, Philadelphia 19104, USA.
Nature Genetics (Impact Factor: 29.65). 12/1998; 20(3):288-90. DOI: 10.1038/3104
Source: PubMed

ABSTRACT Retrotransposition affects genome structure by increasing repetition and producing insertional mutations. Dispersion of the retrotransposon L1 throughout mammalian genomes suggests that L1 activity might be an important evolutionary force. Here we report that L1 retrotransposition contributes to rapid genome evolution in the mouse, because a number of L1 sequences from the T(F) subfamily are retrotransposition competent. We show that the T(F) subfamily is large, young and expanding, containing approximately 4,800 full-length members in strain 129. Eleven randomly isolated, full-length T(F) elements averaged 99.8% sequence identity to each other, and seven of these retrotransposed in cultured cells. Thus, we estimate that the mouse genome contains approximately 3,000 active T(F) elements, 75 times the estimated number of active human L1s. Moreover, as T(F) elements are polymorphic among closely related mice, they have retrotransposed recently, implying rapid amplification of the subfamily to yield genomes with different patterns of interspersed repetition. Our data show that mice and humans differ considerably in the number of active L1s, and probably differ in the contribution of retrotransposition to ongoing sequence evolution.

Download full-text


Available from: Ralph J Deberardinis, Apr 13, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Transposable elements (TEs) occupy a large fraction of metazoan genomes and pose a constant threat to genomic integrity. This threat is particularly critical in germ cells, as changes in the genome that are induced by TEs will be transmitted to the next generation. Small noncoding piwi-interacting RNAs (piRNAs) recognize and silence a diverse set of TEs in germ cells. In mice, piRNA-guided transposon repression correlates with establishment of CpG DNA methylation on their sequences, yet the mechanism and the spectrum of genomic targets of piRNA silencing are unknown. Here we show that in addition to DNA methylation, the piRNA pathway is required to maintain a high level of the repressive H3K9me3 histone modification on long interspersed nuclear elements (LINEs) in germ cells. piRNA-dependent chromatin repression targets exclusively full-length elements of actively transposing LINE families, demonstrating the remarkable ability of the piRNA pathway to recognize active elements among the large number of genomic transposon fragments.
    Genes & Development 06/2014; 28(13). DOI:10.1101/gad.240895.114 · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advancing age remains the largest risk factor for devastating diseases, such as heart disease, stroke, and cancer. The mechanisms by which advancing age predisposes to disease are now beginning to unfold, due in part, to genetic and environmental manipulations of longevity in lower organisms. Converging lines of evidence suggest that DNA damage may be a final common pathway linking several proposed mechanisms of aging. The present review forwards a theory for an additional aging pathway that involves modes of inherent genetic instability. Long interspersed nuclear elements (LINEs) are endogenous non-LTR retrotransposons that compose about 20% of the human genome. The LINE-1 (L1) gene products, ORF1p and ORF2p, possess mRNA binding, endonuclease, and reverse transcriptase activity that enable retrotransposition. While principally active only during embryogenesis, L1 transcripts are detected in adult somatic cells under certain conditions. The present hypothesis proposes that L1s act as an 'endogenous clock', slowly eroding genomic integrity by competing with the organism's double-strand break repair mechanism. Thus, while L1s are an accepted mechanism of genetic variation fueling evolution, it is proposed that longevity is negatively impacted by somatic L1 activity. The theory predicts testable hypotheses about the relationship between L1 activity, DNA repair, healthy aging, and longevity.
    Mechanisms of ageing and development 03/2010; 131(5):299-305. DOI:10.1016/j.mad.2010.03.008 · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that neuronal circuits can be shaped by experience. Neuronal plasticity can be achieved by synaptic competitive interactions and the addition of new neuronal units in neurogenic regions of the adult brain. Recent data have suggested that neuronal progenitor cells can accommodate somatic LINE-1 (Long Interspersed Nuclear Elements-1 or L1) retrotransposition. Genomic L1 insertions may up- or down-regulate transcriptional control of gene expression. Here, we show that exercise has a positive effect on a L1-EGFP reporter in vivo. We found that neurons from mice that experience voluntary exercise are more likely to activate an EGFP reporter marker, representing L1 insertions in the brain, when compared with sedentary animals. In the hippocampus, a neurogenic region of the adult brain, EGFP expression is mainly found in cells localized in the subgranular layer of the dentate gyrus. This observation implies that neuronal progenitor cells may support de novo retrotransposition upon exposure to a new environment. Such evidence suggests that experience-dependent L1 retrotransposition may contribute to the physiological consequences of neuronal plasticity.
    Hippocampus 10/2009; 19(10):1002-7. DOI:10.1002/hipo.20564 · 4.30 Impact Factor