Article

The role of colony-stimulating factor 1 and its receptor in the etiopathogenesis of endometrial adenocarcinoma.

Department of Obstetrics and Gynecology, Department of Developmental and Molecular Biology, and Department of Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York 10461, USA.
Clinical Cancer Research (Impact Factor: 8.19). 04/1995; 1(3):313-25.
Source: PubMed

ABSTRACT Colony-stimulating factor 1 (CSF-1) is a homodimeric growth factor that humorally regulates the growth and differentiation of mononuclear phagocytes, and locally regulates maternal-fetal interactions during pregnancy. It exerts these actions through a transmembrane tyrosine kinase receptor, colony-stimulating factor 1 receptor (CSF-1R), the product of the c-fms proto-oncogene. Recent studies have demonstrated overexpression of CSF-1 and its receptor in breast, ovarian, and endometrial adenocarcinomas. To further investigate the possible role of CSF-1 and its receptor in the pathogenesis of endometrial adenocarcinoma, a prospective study was undertaken to study CSF-1 expression in benign and neoplastic endometrial epithelium and to compare serum CSF-1 levels in endometrial adenocarcinoma patients with healthy perimenopausal women. The mean serum levels of CSF-1 in 71 patients with endometrial cancer (4.9 +/- 1.8 microgram/liter) were significantly elevated compared with levels found in the 32 controls (3.5 +/- 1.1 microgram/liter). Within the endometrial adenocarcinoma group, circulating CSF-1 levels were significantly elevated in patients with large tumor volume, high grade, myometrial invasion, residual disease, and circulating CA-125 levels. High serum levels of serum CSF-1 were associated with elevated serum CA19-9 and CA-125 levels. Immunohistochemistry results revealed in tumor epithelium intense staining for CSF-1R (27 of 54 cases, 50%) and elevated staining for CSF-1 (41 of 54 cases, 75.9%), with intense staining of CSF-1 in 16 of 54 cases (29.6%). Staining was significantly greater in intensity and number of cells involved in malignant compared with benign epithelium for CSF-1R and CSF-1 (P = 0.05 and <0.0001, respectively). A positive correlation between amount and intensity of CSF-1 and CSF-1R staining in endometrial adenocarcinoma tissue was also demonstrated (P = 0.007). CSF-1 and CSF-1R mRNA was also detected in the tumor samples, confirming the expression of the protein in these tissues. Reverse transcription-PCR demonstrated the presence of mRNA for both the transmembrane and secreted forms of CSF-1 in all tumors analyzed. These results therefore support the hypotheses that CSF-1 and CSF-1R are overexpressed in endometrial adenocarcinoma, that levels of expression significantly correlate with clinicopathological risk factors for poor outcome, and that CSF-1 in association with its receptor via autocrine, juxtacrine, and/or paracrine interactions has a causal role in endometrial adenocarcinoma development and proliferation.

0 Followers
 · 
46 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The macrophages role within the tumor microenvironment has amended by a variety of factors, thus serves a vital role in tissue morphogenesis. The role of macrophages in health and disease differs enormously as the macrophage has shown dual functions. Macrophage has a basic role in antigen presentation serving as the first line of defense in diseases. However the presence of cytokines and growth factors, both together have regulated the macrophage to become negative effectors promoting tumor activity. Hence macrophages are a double edged weapon, and any imbalance in the regulatory mechanisms caused a shift from tumoricidal to tumorigenic activities. TAMs would be the main reason of the invasion in tumor microenvironment enhancing as well as tumor invasion, angiogenesis and metastasis promoting tumor genesis. Macrophages are the multifunctional cells which have conducted by the tumor cells to produce tumor promoting factors that enable the stimulation of angiogenesis, and tumor cell invasion. This fact has resulted initiation or promotion of tumor genesis, where the tumor has progressed to an upper malignant stage. The present review has focused on the tumor associated macrophages and their roles in tumor genesis.
    Iranian Journal of Cancer Prevention 03/2014; 7(1):1-8.
  • Body & Society 02/2013; 20(1):3-30. DOI:10.1177/1357034X13506470 · 1.44 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumors with osteoclast-like giant cells (OGCs) have been reported in a variety of organs and exert an invasive and prometastatic phenotype, but the functional role of OGCs in the tumor environment has not been fully clarified. We established tumors containing OGCs to clarify the role of OGCs in tumor phenotype. A mixture of HeLa cells expressing macrophage colony-stimulating factor (M-CSF, HeLa-M) and receptor activator of nuclear factor-κB ligand (RANKL, HeLa-R) effectively supported the differentiation of osteoclast-like cells from bone marrow macrophages in vitro. Moreover, a xenograft study showed OGC formation in a tumor composed of HeLa-M and HeLa-R. Surprisingly, the tumors containing OGCs were significantly larger than the tumors without OGCs, although the growth rates were not different in vitro. Histological analysis showed that lymphangiogenesis and macrophage infiltration in the tumor containing OGCs, but not in other tumors were accelerated. According to quantitative PCR analysis, vascular endothelial growth factor (VEGF)-C mRNA expression increased with differentiation of osteoclast-like cells. To investigate whether VEGF-C expression is responsible for tumor growth and macrophage infiltration, HeLa cells overexpressing VEGF-C (HeLa-VC) were established and transplanted into mice. Tumors composed of HeLa-VC mimicked the phenotype of the tumors containing OGCs. Furthermore, the vascular permeability of tumor microvessels also increased in tumors containing OGCs and to some extent in VEGF-C-expressing tumors. These results suggest that macrophage infiltration and vascular permeability are possible mediators in these tumors. These findings revealed that OGCs in the tumor environment promoted tumor growth and lymphangiogenesis, at least in part, by secreting VEGF-C.
    Biochemical and Biophysical Research Communications 03/2014; 446(1). DOI:10.1016/j.bbrc.2014.02.113 · 2.28 Impact Factor

Full-text (2 Sources)

Download
25 Downloads
Available from
May 28, 2014