Article

At least three linear regions but not the zinc-finger domain of U1C protein are exposed at the surface of the protein in solution and on the human spliceosomal U1 snRNP particle.

Institut de Biologie Moléculaire et Cellulaire, UPR 9021 CNRS, 15 rue Descartes, 67000 Strasbourg, France.
Nucleic Acids Research (Impact Factor: 9.11). 01/1999; 26(23):5486-91. DOI: 10.1093/nar/26.23.5486
Source: PubMed

ABSTRACT No structural information on U1C protein either in its free state or bound to the spliceosomal U1 small nuclear ribonucleoprotein (snRNP) particle is currently available. Using rabbit antibodies raised against a complete set of 15 U1C overlapping synthetic peptides (16-30 residues long) in different immunochemical tests, linear regions exposed at the surface of free and U1 snRNP-bound U1C were identified. Epitopes within at least three regions spanning residues 31-62, 85-103 and 116-159 were recognized on free and plastic-immobilized recombinant human U1C expressed in Escherichia coli, on in vitro translated U1C protein and on U1C bound to the U1 snRNP particle present in HeLa S100 extract. Using a zinc affinity labeling method, we further showed that the N-terminal U1C peptide containing a zinc-finger motif (peptide 5-34) effectively binds65Zn2+. The N-terminal region of U1C, which is functional in U1 snRNP assembly, is apparently not located at the surface of the U1 snRNP particle.

Download full-text

Full-text

Available from: Sylviane Muller, Jul 02, 2015
0 Followers
 · 
27 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The U1 small nuclear ribonucleoprotein (U1 snRNP) binds to the pre-mRNA 5' splice site (ss) at early stages of spliceosome assembly. Recruitment of U1 to a class of weak 5' ss is promoted by binding of the protein TIA-1 to uridine-rich sequences immediately downstream from the 5' ss. Here we describe a molecular dissection of the activities of TIA-1. RNA recognition motifs (RRMs) 2 and 3 are necessary and sufficient for binding to the pre-mRNA. The non- consensus RRM1 and the C-terminal glutamine-rich (Q) domain are required for association with U1 snRNP and to facilitate its recruitment to 5' ss. Co-precipitation experiments revealed a specific and direct interaction involving the N-terminal region of the U1 protein U1-C and the Q-rich domain of TIA-1, an interaction enhanced by RRM1. The results argue that binding of TIA-1 in the vicinity of a 5' ss helps to stabilize U1 snRNP recruitment, at least in part, via a direct interaction with U1-C, thus providing one molecular mechanism for the function of this splicing regulator.
    The EMBO Journal 01/2003; 21(24):6882-92. · 10.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In 293 cells, splicing of the human fibroblast growth factor receptor-2 K-SAM alternative exon is inefficient, but can be made efficient by provoking TIA-1 binding to the U-rich IAS1 sequence downstream from the exon's 5' splice site. We show here that TIA-1 domains known to interact with U1 snRNP and to recruit it to 5' splice sites in vitro are required for TIA-1 activation of K-SAM exon splicing in vivo. We further show that tethering downstream from the K-SAM exon a fusion between the U1 snRNP component U1C and the bacteriophage MS2 coat protein provokes IAS1-dependent exon splicing, and present evidence that the fusion functions after its incorporation into U1 snRNP. Our in vivo data, taken together with previous in vitro results, show that K-SAM splicing activation involves cooperative binding of TIA-1 and U1 snRNP to the exon's 5' splice site region.
    Biochemical and Biophysical Research Communications 08/2007; 358(4):1065-70. DOI:10.1016/j.bbrc.2007.05.050 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is now clear that a detailed picture of cell regulation requires a comprehensive understanding of the abundant short protein motifs through which signaling is channeled. The current body of knowledge has slowly accumulated through piecemeal experimental investigation of individual motifs in signaling. Computational methods contributed little to this process. A new generation of bioinformatics tools will aid the future investigation of motifs in regulatory proteins, and the disordered polypeptide regions in which they frequently reside. Allied to high throughput methods such as phosphoproteomics, signaling networks are becoming amenable to experimental deconstruction. In this review, we summarise the current state of linear motif biology, which uses low affinity interactions to create cooperative, combinatorial and highly dynamic regulatory protein complexes. The discrete deterministic properties implicit to these assemblies suggest that models for cell regulatory networks in systems biology should neither be overly dependent on stochastic nor on smooth deterministic approximations.
    Frontiers in Bioscience 02/2008; 13:6580-603. DOI:10.2741/3175 · 4.25 Impact Factor