Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy.

Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Germany.
Nature (Impact Factor: 42.35). 01/1999; 396(6712):687-90. DOI: 10.1038/25367
Source: PubMed

ABSTRACT Epilepsy affects more than 0.5% of the world's population and has a large genetic component. It is due to an electrical hyperexcitability in the central nervous system. Potassium channels are important regulators of electrical signalling, and benign familial neonatal convulsions (BFNC), an autosomal dominant epilepsy of infancy, is caused by mutations in the KCNQ2 or the KCNQ3 potassium channel genes. Here we show that KCNQ2 and KCNQ3 are distributed broadly in brain with expression patterns that largely overlap. Expression in Xenopus oocytes indicates the formation of heteromeric KCNQ2/KCNQ3 potassium channels with currents that are at least tenfold larger than those of the respective homomeric channels. KCNQ2/KCNQ3 currents can be increased by intracellular cyclic AMP, an effect that depends on an intact phosphorylation site in the KCNQ2 amino terminus. KCNQ2 and KCNQ3 mutations identified in BFNC pedigrees compromised the function of the respective subunits, but exerted no dominant-negative effect on KCNQ2/KCNQ3 heteromeric channels. We predict that a 25% loss of heteromeric KCNQ2/KCNQ3-channel function is sufficient to cause the electrical hyperexcitability in BFNC. Drugs raising intracellular cAMP may prove beneficial in this form of epilepsy.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: KCNQ2 (Kv7.2) and KCNQ3 (Kv7.3) K þ channels dampen neuronal excitability and their functional impairment may lead to epilepsy. Less is known about KCNQ5 (Kv7.5), which also displays wide expression in the brain. Here we show an unexpected role of KCNQ5 in dampening synaptic inhibition and shaping network synchronization in the hippocampus. KCNQ5 localizes to the postsynaptic site of inhibitory synapses on pyramidal cells and in interneurons. Kcnq5 dn/dn mice lacking functional KCNQ5 channels display increased excitability of different classes of interneurons, enhanced phasic and tonic inhibition, and decreased electrical shunting of inhibitory postsynaptic currents. In vivo, loss of KCNQ5 function leads to reduced fast (gamma and ripple) hippocampal oscillations, altered gamma-rhythmic discharge of pyramidal cells and impaired spatial representations. Our work demonstrates that KCNQ5 controls excitability and function of hippocampal networks through modulation of synaptic inhibition.
    Nature Communications 02/2015; 6. · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the KCNQ2 gene encoding for voltage-gated potassium channel subunits have been found in patients affected with early onset epilepsies with wide phenotypic heterogeneity, ranging from benign familial neonatal seizures (BFNS) to epileptic encephalopathy with cognitive impairment, drug resistance, and characteristic electroencephalography (EEG) and neuroradiologic features. By contrast, only few KCNQ3 mutations have been rarely described, mostly in patients with typical BFNS. We report clinical, genetic, and functional data from a family in which early onset epilepsy and neurocognitive deficits segregated with a novel mutation in KCNQ3 (c.989G>T; p.R330L). Electrophysiological studies in mammalian cells revealed that incorporation of KCNQ3 R330L mutant subunits impaired channel function, suggesting a pathogenetic role for such mutation. The degree of functional impairment of channels incorporating KCNQ3 R330L subunits was larger than that of channels carrying another KCNQ3 mutation affecting the same codon but leading to a different amino acid substitution (p.R330C), previously identified in two families with typical BFNS. These data suggest that mutations in KCNQ3, similarly to KCNQ2, can be found in patients with more severe phenotypes including intellectual disability, and that the degree of the functional impairment caused by mutations at position 330 in KCNQ3 may contribute to clinical disease severity.
    Epilepsia 12/2014; · 4.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the study was to investigate whether Kv7 channels and their ancillary β-subunits, KCNE, are functionally expressed in the human urinary bladder. Kv7 channels were examined at the molecular level and by functional studies using RT-qPCR and myography, respectively. We found mRNA expression of KCNQ1, KCNQ3-KCNQ5 and KCNE1-5 in the human urinary bladder from patients with normal bladder function (n = 7) and in patients with bladder outflow obstruction (n = 3). Interestingly, a 3.4-fold up-regulation of KCNQ1 was observed in the latter. The Kv7 channel subtype selective modulators, ML277 (activator of Kv7.1 channels, 10 μM) and ML213 (activator of Kv7.2, Kv7.4, Kv7.4/7.5 and Kv7.5 channels, 10 μM), reduced the tone of 1 μM carbachol pre-constricted bladder strips. XE991 (blocker of Kv7.1-7.5 channels, 10 μM) had opposing effects as it increased contractions achieved with 20 mM KPSS. Furthermore, we investigated if there is interplay between Kv7 channels and β-adrenoceptors. Using cumulative additions of isoprenaline (β-adrenoceptor agonist) and forskolin (adenylyl cyclase activator) in combination with the Kv7 channel activator and blocker, retigabine and XE991, we did not find interplay between Kv7 channels and β-adrenoceptors in the human urinary bladder. The performed gene expression analysis combined with the organ bath studies imply that compounds that activate Kv7 channels could be useful for treatment of overactive bladder syndrome.
    PLoS ONE 01/2015; 10(2):e0117350. · 3.53 Impact Factor


Available from
Feb 8, 2015