Article

A Human Minor Histocompatibility Antigen Specific for B Cell Acute Lymphoblastic Leukemia

Department of Hematology, University Hospital Nijmegen, 6500 HB Nijmegen, The Netherlands.
Journal of Experimental Medicine (Impact Factor: 13.91). 02/1999; 189(2):301-8. DOI: 10.1084/jem.189.2.301
Source: PubMed

ABSTRACT Human minor histocompatibility antigens (mHags) play an important role in the induction of cytotoxic T lymphocyte (CTL) reactivity against leukemia after human histocompatibility leukocyte antigen (HLA)-identical allogeneic bone marrow transplantation (BMT). As most mHags are not leukemia specific but are also expressed by normal tissues, antileukemia reactivity is often associated with life-threatening graft-versus-host disease (GVHD). Here, we describe a novel mHag, HB-1, that elicits donor-derived CTL reactivity in a B cell acute lymphoblastic leukemia (B-ALL) patient treated by HLA-matched BMT. We identified the gene encoding the antigenic peptide recognized by HB-1-specific CTLs. Interestingly, expression of the HB-1 gene was only observed in B-ALL cells and Epstein-Barr virus-transformed B cells. The HB-1 gene-encoded peptide EEKRGSLHVW is recognized by the CTL in association with HLA-B44. Further analysis reveals that a polymorphism in the HB-1 gene generates a single amino acid exchange from His to Tyr at position 8 within this peptide. This amino acid substitution is critical for recognition by HB-1-specific CTLs. The restricted expression of the polymorphic HB-1 Ag by B-ALL cells and the ability to generate HB-1-specific CTLs in vitro using peptide-loaded dendritic cells offer novel opportunities to specifically target the immune system against B-ALL without the risk of evoking GVHD.

Download full-text

Full-text

Available from: Francis Brasseur, Jul 04, 2015
0 Followers
 · 
269 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have examined the alleles of eleven minor histocompatibility antigens (MiHAs) and investigated the occurrence of immunogenic MiHA disparities in 62 recipients of allogeneic hematopoietic cell transplantation (allo-HCT) with myeloablative conditioning performed between 2000 and 2008 and in their HLA-matched sibling donors. Immunogenic MiHA mismatches were detected in 42 donor-recipient pairs: in 29% MiHA was mismatched in HVG direction, in another 29% in GVH direction; bidirectional MiHA disparity was detected in 10% and no MiHA mismatches in 32%. Patients with GVH-directed HY mismatches had lower both overall survival and disease-free survival at 3 years than patients with compatible HY; also higher incidence of both severe acute GvHD and extensive chronic GVHD was observed in patients with GVH-directed HY mismatch. On contrary, GVH-directed mismatches of autosomally encoded MiHAs had no negative effect on overall survival. Results of our study help to understand why posttransplant courses of allo-HCT from siblings may vary despite the complete high-resolution HLA matching of a donor and a recipient.
    11/2012; 2012:257086. DOI:10.1155/2012/257086
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A great paradox in cellular immunology is how T cell allorecognition exists at high frequencies (up to 10%) despite the stringent requirements of discriminating 'self' from 'non-self' imposed by MHC restriction. Thus, in tissue transplantation, a substantial proportion of the recipient's T cells will have the ability to recognize the graft and instigate an immune response against the transplanted tissue, ultimately resulting in graft rejection--a manifestation of T cell alloreactivity. Transplantation of human organs and lymphoid cells as treatment for otherwise life-threatening diseases has become a more routine medical procedure making this problem of great importance. Immunologists have gained important insights into the mechanisms of T cell alloreactivity from cytotoxic T cell assays, affinity-avidity studies, and crystal structures of peptide-MHC (pMHC) molecules and T cell receptors (TCRs) both alone and in complex. Despite the clinical significance of alloreactivity, the crystal structure of an alloreactive human TCR in complex with both cognate pMHC and an allogeneic pMHC complex has yet to be determined. This review highlights some of the important findings from studies characterizing the way in which alloreactive T cell receptors and pMHC molecules interact in an attempt to resolve this great irony of the cellular immune response.
    Molecular Immunology 03/2008; 45(3):583-98. DOI:10.1016/j.molimm.2006.05.018 · 3.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Following a human leucocyte antigen (HLA)-identical allogeneic stem cell transplantation (allo-SCT), minor histocompatibility antigens (mHags) play an important role in the induction of graft-versus-leukaemia (GvL) and graft-versus-myeloma (GvM). Many mHags show ubiquitous tissue expression and are associated with GvL and graft-versus-host disease. Here we describe a cytotoxic CD4(+) T lymphocyte line and a cytotoxic, CD4(+) T cell clone (CTC), 3AB11, which recognized a tissue-restricted mHag. This CTC was isolated from a multiple myeloma patient with clinical GvM following an HLA-matched allo-SCT. CTC 3AB11 was activated in a HLA-DP*0401 restricted fashion and the antigen was expressed by 27% of HLA-DP*0401 positive Epstein-Barr virus (EBV)-transformed B-cell lines (EBV-B). Tissue distribution analysis of antigen 3AB11 showed it to be expressed by patient-derived EBV-transformed B cell lines (EBVp), the myeloma plasma cell-line UM9 and monocytes. It was weakly expressed by peripheral blood-derived phytohaemagglutinin-induced T-cell blasts and absent on CD40L stimulated peripheral B (CD40L B) cells and stromal cells. The relatively high prevalence of the HLA class II-restricted 3AB11 antigen, together with its apparent haematopoietic-restricted expression, makes it an antigen of interest for cellular immunotherapy.
    British Journal of Haematology 02/2005; 128(1):73-81. DOI:10.1111/j.1365-2141.2004.05283.x · 4.96 Impact Factor