The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct.

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 03/1999; 274(6):3453-60. DOI: 10.1074/jbc.274.6.3453
Source: PubMed

ABSTRACT Polypeptide import into the yeast endoplasmic reticulum (ER) requires two hsp70s, Ssa1p in the cytosol and BiP (Kar2p) in the ER lumen. After import, aberrant polypeptides may be exported to the cytoplasm for degradation by the proteasome, and defects in the ER chaperone calnexin (Cne1p) compromise their degradation. Both import and export require BiP and the Sec61p translocation complex, suggesting that import and export may be mechanistically related. We now show that the cne1Delta and two kar2 mutant alleles exhibit a synthetic interaction and that the export and degradation of pro-alpha factor is defective in kar2 mutant microsomes. Pulse-chase analysis indicates that A1PiZ, another substrate for degradation, is stabilized in the kar2 strains at the restrictive temperature. Because two of the kar2 mutants examined are proficient for polypeptide import, the roles of BiP during ER protein export and import differ, indicating that these processes must be mechanistically distinct. To examine whether Ssa1p drives polypeptides from the ER and is also required for degradation, we assembled reactions using strains either containing a mutation in SSA1 or in which the level of Ssa1p could be regulated. We found that pro-alpha factor and A1PiZ were degraded normally, indicating further that import and export are distinct and that other cytosolic factors may pull polypeptides from the ER.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the previous our study, a cDNA that encodes protein disulfide isomerase from Bombyx mori (bPDI)was isolated and characterized. bPDI has an open reading frame of 494 amino acids contained two PDI-typical thioredoxin active site of WCGHCK and ER (endoplasmic reticulum) retention signal of the KDEL motif at its C-terminal. Recent studies have demonstrated that misfolded proteins are accumulated in many diseases including Alzheimer’s, goiter, emphysema, and prion infections. bPDI was over-expressed or knock-downed in Sf9 cells to study the relationship between bPDI expression and protections against protein misfolding. bPDI gene was cloned in insect expression vector pIZT/V5-His for over-expression and bPDI double-stranded RNA (dsRNA) was generated for knock-down. Over-expression of bPDI significantly improved survival rate, but bPDI dsRNA transfection significantly reduced survival rate after 48 hours exposure. In mock-transfected or wild-type cells had no significant effect. The results support the view that bPDI is one of the important intracellular components for cell protect mechanism, especially, against ER stress such as protein misfolding.
    Journal of Life Science. 08/2007; 17(8).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: How misfolded proteins are exported from the ER to the cytosol for degradation (ER-associated Degradation, ERAD) and which proteins are participating in this process is not understood. Several studies using a single, leaky mutant indicated that Sec63p might be involved in ERAD. More recently, Sec63p was also found strongly associated with proteasomes attached to the protein-conducting channel in the ER membrane which presumably form part of the export machinery. These observations prompted us to reinvestigate the role of Sec63p in ERAD by generating new mutants which were selected in a screen monitoring the intracellular accumulation of the ERAD substrate CPY*. We show that a mutation in the DnaJ-domain of Sec63p causes a defect in ERAD, whereas mutations in the Brl, acidic, and transmembrane domains only affect protein import into the ER. Unexpectedly, mutations in the acidic domain which mediates interaction of Sec63p with Sec62p also caused defects in cotranslational import. In contrast to mammalian cells where SEC63 expression levels affect steady-state levels of multi-spanning transmembrane proteins, the sec63 J-domain mutant was only defective in ERAD of soluble substrates.
    PLoS ONE 12/2013; 8(12):e82058. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) associate with the newly synthesized proteins to prevent their aggregation and help them fold and assemble correctly. Chaperone function of BiP, which is a Hsp70 homologue in ER, is controlled by the N-terminal ATPase domain. The ATPase activity of the ATPase domain is affected by regulatory factors. BAP was identified as a nucleotide exchange factor of BiP (Grp78), which exchanges ADP with ATP in the ATPase domain of BiP This study presents whether BAP can influence folding of a protein, immunoglobulin heavy chain that is bound to BiP tightly. We first examined which nucleotide of ADP and ATP affects on BAP binding to BiP The data showed that endogenous BAP of HEK293 cells prefers ADP for binding to BiP in vitro, suggesting that BAP first releases ADP from the ATPase domain in order to exchange with ATP. Immunoglobulin heavy chain, an unfolded protein substrate, was released from BiP in the presence of BAP but not in the presence of ERdj3, which is another regulatory factor for BiP accelerating the rate of ATP hydrolysis of BiP The ADP-releasing function of BAP was, therefore, believed to be responsible for immunoglobulin heavy chain release from BiP. Grp170, another Hsp70 homologue in ER, did not co-precipited with BAP from -metabolic labeled HEK293 lysate containing both overexpressed Grp170 and BAP. These data suggested that BAP has no specificity to Grp170 although the ATPase domains of Grp170 and BiP are homologous each other.
    Journal of Life Science. 01/2006; 16(3).