Maternal regulation of embryonic growth: The role of vasoactive intestinal peptide

Department of Pediatrics, George Washington University, Washington, Washington, D.C., United States
Endocrinology (Impact Factor: 4.5). 03/1999; 140(2):917-24. DOI: 10.1210/en.140.2.917
Source: PubMed


Vasoactive intestinal peptide (VIP) is an important growth regulator of the embryonic day (E)9-E11 mouse. In comparably aged rat embryos, VIP messenger RNA (mRNA) is not detectable; however, peak concentrations of VIP in maternal rat serum indicate a nonembryonic source. In the current study, mouse maternal and embryonic tissues were examined from E6-E12. Although RT-PCR revealed VIP mRNA in E6-E7 conceptuses, by E8 (when extraembryonic tissues could be separated from the embryo), VIP mRNA was detected only in the decidua/trophoblast. Decidual/trophoblastic VIP mRNA decreased until E10, after which it was not detectable. VIP mRNA was not apparent in the embryo until E11-E12. At E9, VIP immunoreactivity was localized to abundant, diffuse cells in the decidua basalis, which were also immunoreactive for T cell markers. VIP binding sites were dense in the decidua/trophoblast at E6, but gradually decreased until E10, after which they were not apparent. VIP binding sites were detected in embryonic neuroepithelium by E9. The transient presence of VIP binding sites and mRNA in the decidua/trophoblast correlate with the critical period of VIP growth regulation, when VIP mRNA is absent in the embryo. These findings suggest that maternal lymphocytes are the source of VIP's regulating early postimplantation embryonic growth.

10 Reads
  • Source
    • "Endogenous actions of VIP were found in promoting hippocampal-dependent spatial discrimination in water maze learning (Glowa et al., 1992) and promoting embryonic brain development (Gressens et al., 1994; Spong et al., 1999; Zupan et al., 2000). The later does not relate directly to hippocampal function, is elicited by VIP originating in maternal placental lymphocytes (Gressens et al., 1994; Spong et al., 1999; Zupan et al., 2000) and is probably the cause for the cognitive impairment of the progeny of VIPdeficient female mice (Hill et al., 2007a; Stack et al., 2008). Thus, this study is of particular relevance to understand the role of endogenous VIP and hippocampal VPAC 1 receptors past the developmental stages, how they are endogenously activated and if they can constitute molecular targets to treat cognitive dysfunction. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Vasoactive intestinal peptide (VIP), an important modulator of hippocampal synaptic transmission, influences exploration and hippocampal-dependent learning in rodents. Homosynaptic long-term depression (LTD) and depotentiation are two plasticity phenomena implicated in learning of behavior flexibility and spatial novelty detection. In this study, we investigated the influence of endogenous VIP on LTD and depotentiation induced by low-frequency stimulation (1 Hz, 900 pulses) of the hippocampal CA1 area in vitro in juvenile and young adult rats, respectively. LTD and depotentiation were enhanced by the VIP receptor antagonist Ac-Tyr(1) , D-Phe(2) GRF (1-29) and the selective VPAC1 receptor antagonist, PG 97-269, but not the selective VPAC2 receptor antagonist, PG 99-465. This action was mimicked by an anti-VIP antibody, suggesting that VIP, and not pituitary adenylate cyclase-activating polypeptide (PACAP), is the endogenous mediator of these effects. Selective inhibition of PAC1 receptors with PACAP (6-38) enhanced depotentiation, but not LTD. VPAC1 receptor blockade also revealed LTD in young adult rats, an effect abolished by the GABAA antagonist bicuculline, evidencing an involvement of GABAergic transmission. We conclude that inhibition of LTD and depotentiation by endogenous VIP occurs through VPAC1 receptor-mediated mechanisms and suggests that disinhibition of pyramidal cell dendrites is the most likely physiological mechanism underlying this effect. As such, VPAC1 receptor ligands may be considered promising pharmacological targets for treatment of cognitive dysfunction in diseases involving altered GABAergic circuits and pathological saturation of LTP/LTD like Down's syndrome and temporal lobe epilepsy. © 2014 Wiley Periodicals, Inc.
    Hippocampus 11/2014; 24(11). DOI:10.1002/hipo.22316 · 4.16 Impact Factor
  • Source
    • "Pregnant Ts65Dn females were randomly assigned to NAP+SAL or control groups, and treated by investigators blinded to group and genotype from gestational day 8 to 12. This time period was chosen based on previous studies that showed that this is a critical time for VIP action during in utero development [28]. Offspring were weighed and tested from postnatal day (P) 5 to 21 for motor and sensory milestones with standardized tests [7]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: Down syndrome is the most common genetic cause of mental retardation. Active fragments of neurotrophic factors release by astrocyte under the stimulation of vasoactive intestinal peptide, NAPVSIPQ (NAP) and SALLRSIPA (SAL) respectively, have shown therapeutic potential for developmental delay and learning deficits. Previous work demonstrated that NAP+SAL prevent developmental delay and glial deficit in Ts65Dn that is a well-characterized mouse model for Down syndrome. The objective of this study is to evaluate if prenatal treatment with these peptides prevents the learning deficit in the Ts65Dn mice. Pregnant Ts65Dn female and control pregnant females were randomly treated (intraperitoneal injection) on pregnancy days 8 through 12 with saline (placebo) or peptides (NAP 20 µg +SAL 20 µg) daily. Learning was assessed in the offspring (8-10 months) using the Morris Watermaze, which measures the latency to find the hidden platform (decrease in latency denotes learning). The investigators were blinded to the prenatal treatment and genotype. Pups were genotyped as trisomic (Down syndrome) or euploid (control) after completion of all tests. Statistical analysis: two-way ANOVA followed by Neuman-Keuls test for multiple comparisons, P<0.05 was used to denote statistical significance. Trisomic mice who prenatally received placebo (Down syndrome-placebo; n = 11) did not demonstrate learning over the five day period. DS mice that were prenatally exposed to peptides (Down syndrome-peptides; n = 10) learned significantly better than Down syndrome-placebo (p<0.01), and similar to control-placebo (n = 33) and control-peptide (n = 30). In conclusion prenatal treatment with the neuroprotective peptides (NAP+SAL) prevented learning deficits in a Down syndrome model. These findings highlight a possibility for the prevention of sequelae in Down syndrome and suggest a potential pregnancy intervention that may improve outcome.
    PLoS ONE 11/2012; 7(11):e50724. DOI:10.1371/journal.pone.0050724 · 3.23 Impact Factor
  • Source
    • "Tregs, helping to maintain immunotolerance in different animal models including nonobese diabetic (NOD) mice (Rosignoli et al. 2006, Gonzalez Rey & Delgado 2007). Finally, VIP participates in the maternal regulation of embryonic growth in rodents during the early post-implantation period and the blockade of VIP function induced growth retardation and microcephaly (Gressens et al. 1994, Spong et al. 1999, Rangon et al. 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Among several factors known to modulate embryo implantation and survival, uterine quiescence and neovascularization, maternal immunotolerance through the Th1/Th2 cytokine balance towards a Th2 profile, local regulatory T-cell (Treg) activation, and high levels of progesterone were assigned a prominent role. Vasoactive intestinal peptide (VIP) is a neuroimmunopeptide that has anti-inflammatory effects, promotes Th2 cytokines and CD4(+)CD25(+)FOXP3(+) Treg activation, and stimulates exocrine secretion, smooth muscle relaxation, and vasodilatation favoring uterus quiescence. The goal of the present work was to explore the participation of VIP in the implantation sites of normal and pregnant prediabetic nonobese diabetic (NOD) females, a mouse strain that spontaneously develops an autoimmune exocrinopathy similar to Sjögren's syndrome. Our results indicate a reduction in litter size from the third parturition onwards in the NOD female lifespan with increased resorption rates. Progesterone systemic levels were significantly decreased in pregnant NOD mice compared with BALB/c mice, although the allogeneic response to progesterone by spleen cells was not impaired. VIP receptors, Vipr1 and Vipr2 (Vpac1 and Vpac2), were expressed at the implantation sites and VIP induced leukemia inhibitory factor (LIF) and Treg marker expression in both strains; however, a reduced Vip expression was found in NOD implantation sites. We conclude that the reduced birth rate at 16-week-old NOD mice with a Th1 systemic cytokine profile involves resorption processes with a lower expression of VIP at the sites of implantation, which acts as a local inducer of pro-implantatory LIF and Treg activation.
    Reproduction 08/2009; 138(4):733-42. DOI:10.1530/REP-09-0171 · 3.17 Impact Factor
Show more


10 Reads