Increased site-specific phosphorylation of tyrosine hydroxylase accompanies stimulation of enzymatic activity induced by cessation of dopamine neuronal activity.

Department of Psychiatry, New York University Medical Center, New York, New York, USA.
Molecular Pharmacology (Impact Factor: 4.12). 03/1999; 55(2):202-9.
Source: PubMed

ABSTRACT Activation of striatal dopamine (DA) neurons by neuroleptic treatment or by electrical stimulation of the nigrostriatal pathway increases the activity of tyrosine hydroxylase (TH). The increase is mediated by phosphorylation of the enzyme. However, abolition of DA neuronal activity [by gamma-butyrolactone (GBL) treatment or transection of the nigrostriatal pathway] also increases TH activity. Quantitative blot immunolabeling experiments using site- and phosphorylation state-specific antibodies to TH demonstrated that GBL treatment (750 mg/kg, 35 min) significantly increased phosphorylation at Ser19 (+40%) and Ser40 (+217%) without altering Ser31 phosphorylation. Concomitantly, GBL treatment [along with the 3,4-dihydroxyphenylalanine (dopa) decarboxylase inhibitor NSD-1015, 100 mg/kg, 30 min] increased in vivo striatal dopa accumulation and in vitro TH activity 3-fold. Likewise, cerebral hemitransection of the nigrostriatal pathway significantly increased phosphorylation of TH at Ser19 (+89%) and Ser40 (+158%) but not at Ser31; dopa levels were increased accordingly (+191%). Kinetic analysis of TH activity established that GBL treatment and hemitransection primarily decreased the Km for the cofactor tetrahydrobiopterin (3-fold). The effects of GBL and hemitransection were abolished or attenuated by pretreatment with the DA agonist R-(-)-N-n-propylnorapomorphine (NPA; 30 microgram/kg, 40 min), presumably via stimulation of inhibitory presynaptic DA autoreceptors. NPA dose-response curves for reversal of GBL-induced dopa accumulation and Ser40 phosphorylation were identical; however, only the highest dose of NPA reversed the small and variable increase in Ser19 phosphorylation. Thus, TH activity seems to be regulated by phosphorylation in both hyper- and hypoactive striatal DA neurons; in the latter case, activation seems to be caused by selective phosphorylation of Ser40.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gamma-butyrolactone (GBL) elevates striatal and prefrontal cortex dopamine levels; only the striatal dopamine levels are elevated by increased dopamine synthesis. If increased dopamine synthesis is necessary in order for dopamine levels to be affected by tyrosine availability, then GBL-induced prefrontal cortex dopamine levels should be tyrosine insensitive. Rats received either vehicle, tyrosine (50 or 200 mg/kg i.p.) or a tyrosine-depleting mixture prior to GBL 750 mg/kg i.p.. GBL-induced dopamine levels in prefrontal cortex were lowered by tyrosine depletion. GBL-induced striatal dopamine levels were not affected. Hence, increased dopamine synthesis may not be necessary in order for tyrosine availability to affect pharmacologically elevated prefrontal cortex dopamine levels.
    European Journal of Pharmacology 07/2008; 589(1-3):106-9. DOI:10.1016/j.ejphar.2008.06.018 · 2.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosine levels do not generally affect indices of dopamine (DA) synthesis or efflux under basal conditions, but can do so when DA synthesis is increased. One possibility is that a high rate of DA synthesis depletes the normally adequate pool of endogenous tyrosine. To study this, we administered drugs known to preferentially increase striatal DA synthesis and examined DOPA levels in striatal microdialysate during perfusion with NSD-1015. In additional groups, we also measured DA, tyrosine and large neutral amino acids in striatal microdialysate, as well as in tissue from striatum and medial prefrontal cortex (MPFC). gamma-butyrolactone (GBL) (750 mg/kg i.p.) increased DOPA levels in striatal microdialysate, increased tissue DA levels in the MPFC and striatum, but lowered tissue tyrosine levels only in striatum. In striatal microdialysate, GBL markedly lowered DA levels; tyrosine levels were only marginally lower. Haloperidol (HAL) (1.0 mg/kg s.c.)+/-amfonelic acid (AFA) (5 mg/kg i.p.) increased striatal DOPA accumulation, increased striatal DA efflux, lowered striatal tissue tyrosine levels, but did not affect microdialysate tyrosine levels. There were no consistent changes in levels of other large neutral amino acids. We conclude that increased tyrosine hydroxylation can significantly deplete the endogenous pool of tyrosine. Under such conditions, near normal extracellular tyrosine levels are maintained despite lower tissue levels. The data are consistent with a net transfer of tyrosine from non-DAergic cells to DA terminals in support of DA synthesis.
    Brain Research 11/2006; 1115(1):26-36. DOI:10.1016/j.brainres.2006.07.074 · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our previous studies have shown an enhanced activity of the noradrenergic pathways innervating the heart in rats withdrawn from morphine. However, the possible adaptive changes that can occur in these pathways during morphine dependence are not known. We studied the alterations in tyrosine hydroxylase (the rate-limiting enzyme in catecholamines biosynthesis) and tyrosine hydroxylase activity in the heart (right and left ventricle) during morphine withdrawal. In the same paradigm, we measured Fos expression as a marker of neuronal activation and the normetanephrine/noradrenaline ratio (an index of noradrenaline turnover). We evaluated the levels of tyrosine hydroxylase and Fos by quantitative Western blot analysis, and noradrenaline turnover using high-performance liquid chromatography (HPLC). Dependence on morphine was induced by a 7-day s.c. implantation of morphine pellets. Morphine withdrawal was precipitated on day 8 by an injection of naloxone (5 mg/kg s.c.). The results show a significant increase in tyrosine hydroxylase levels and activity in the right and left ventricle 30 or 90 min after naloxone precipitated withdrawal in parallel with an increase in noradrenaline turnover. Morphine withdrawal also induced an increase in the Fos expression, which indicates an activation of cardiac cellular activity. Our results suggest that an increase in tyrosine hydroxylase protein levels and tyrosine hydroxylase enzyme activity might contribute to the enhanced noradrenergic activity in the heart in response to morphine withdrawal.
    European Journal of Pharmacology 01/2005; 506(2):119-28. DOI:10.1016/j.ejphar.2004.11.009 · 2.68 Impact Factor