Cleavage experiments with deoxythymidine 3',5'-bis-(p-nitrophenyl phosphate) suggest that the homing endonuclease I-PpoI follows the same mechanism of phosphodiester bond hydrolysis as the non-specific Serratia nuclease.

Institut für Biochemie (FB 15), Justus-Liebig-Universität, Giessen, Germany.
FEBS Letters (Impact Factor: 3.34). 02/1999; 443(2):209-14. DOI: 10.1016/S0014-5793(98)01660-3
Source: PubMed

ABSTRACT We show here that two nucleases, Serratia nuclease and I-PpoI, with contrasting specificities, i.e. non-specific vs. highly sequence specific, share a structurally similar active site region with conservation of the catalytically relevant histidine and asparagine residues. On the basis of a comparison of the available structures and biochemical data for wild type and mutant variants of Serratia nuclease and I-PpoI we propose that both enzymes have a common catalytic mechanism, a proposition that is supported by our finding that both enzymes accept deoxythymidine 3',5'-bis-(p-nitrophenyl phosphate) as a substrate and cleave it in an identical manner. According to this mechanism a histidine residue functions as a general base and Mg2+ bound to an asparagine residue as a Lewis acid in phosphodiester bond cleavage.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Using information from wild-type and mutant Vibrio vulnificus nuclease (Vvn) and I-PpoI homing endonuclease co-crystallized with different oligodeoxynucleotides, we have built the complex of Vvn with a DNA octamer and carried out a series of simulations to dissect the catalytic mechanism of this metallonuclease in a stepwise fashion. The distinct roles played in the reaction by individual active site residues, the metal cation and water molecules have been clarified by using a combination of classical molecular dynamics simulations and quantum mechanical calculations. Our results strongly support the most parsimonious catalytic mechanism, namely one in which a single water molecule from bulk solvent is used to cleave the phosphodiester bond and protonate the 3'-hydroxylate leaving group.
    ChemBioChem 11/2011; 12(17):2615-22. · 3.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Serratia endonuclease is an important member of a class of magnesium dependent nucleases that are widely distributed in nature. Here, we describe the location and geometry of a magnesium-water cluster within the active site of this enzyme. The sole protein ligand of the magnesium atom is Asn119; this metal ion is also associated with five water molecules to complete an octahedral coordination complex. These water molecules are very well ordered and there is no evidence of rotational disorder or motion. Glu127 and His89 are located nearby and each is hydrogen bonded to water molecules in the coordination sphere. Asp86 is not chelated to the magnesium or its surrounding water molecules. Results of kinetics and site-specific mutagenesis experiments suggest that this metal-water cluster contains the catalytic metal ion of this enzyme. All residues which hydrogen bond to the water molecules that coordinate the magnesium atom are conserved in nucleases homologous to Serratia endonuclease, suggesting that the water cluster is a conserved feature of this family of enzymes. We offer a detailed structural comparison to one other nuclease, the homing endonuclease I-PpoI, that has recently been shown, in spite of a lack of sequence homology, to share a similar active site geometry to Serratia endonuclease. Evidence from both of these structures suggests that the magnesium of Serratia nuclease participates in catalysis via an inner sphere mechanism.
    Journal of Molecular Biology 06/1999; · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Endonuclease G (EndoG) is a mitochondrial enzyme that responds to apoptotic stimuli by translocating to the nucleus and cleaving chromosomal DNA. EndoG is the main apoptotic endonuclease in the caspase-independent pathway. Mouse EndoG without the mitochondrial localization signal (amino-acid residues 1-43) was successfully overexpressed, purified and crystallized using a microbatch method under oil. The initial crystal (type I) was grown in the presence of the detergent CTAB and diffracted to 2.8 A resolution, with unit-cell parameters a = 72.20, b = 81.88, c = 88.66 A, beta = 97.59 degrees in a monoclinic space group. The crystal contained two monomers in the asymmetric unit, with a predicted solvent content of 46.6%. Subsequent mutation of Cys110 improved the stability of the protein significantly and produced further crystals of types II, III and IV with space groups C2, P4(1)2(1)2 (or P4(3)2(1)2) and P2(1)2(1)2(1), respectively, in various conditions. This suggests the critical involvement of this conserved cysteine residue in the crystallization process.
    Acta Crystallographica Section F Structural Biology and Crystallization Communications 06/2009; 65(Pt 5):504-7. · 0.57 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014

Peter Friedhoff