Regulation of cardiac L-type Ca2+ channel by coexpression of Gαs in Xenopus oocytes

Università degli Studi dell'Insubria, Varese, Lombardy, Italy
FEBS Letters (Impact Factor: 3.17). 03/1999; 444(1):78-84. DOI: 10.1016/S0014-5793(99)00035-6
Source: PubMed


Activation of G(alpha s) via beta-adrenergic receptors enhances the activity of cardiac voltage-dependent Ca2+ channels of the L-type, mainly via protein kinase A (PKA)-dependent phosphorylation. Contribution of a PKA-independent effect of G(alpha s) has been proposed but remains controversial. We demonstrate that, in Xenopus oocytes, antisense knockdown of endogenous G(alpha s) reduced, whereas coexpression of G(alpha s) enhanced, currents via expressed cardiac L-type channels, independently of the presence of the auxiliary subunits alpha2/delta or beta2A. Coexpression of G(alpha s) did not increase the amount of alpha1C protein in whole oocytes or in the plasma membrane (measured immunochemically). Activation of coexpressed beta2 adrenergic receptors did not cause a detectable enhancement of channel activity; rather, a small cAMP-dependent decrease was observed. We conclude that coexpression of G(alpha s), but not its acute activation via beta-adrenergic receptors, enhances the activity of the cardiac L-type Ca2+ channel via a PKA-independent effect on the alpha1C subunit.

Download full-text


Available from: Elena Bossi, May 12, 2014
18 Reads
  • Source
    • "G protein content is important for proper cardiac function. It was found that activation of Gs via β-adrenergic receptors enhanced the activity of cardiac voltage-dependent Ca2+ channels of the l-type.33 One other study showed TG mice with cardiac Gs overexpression exhibited enhanced inotropic and chronotropic responses to sympathetic stimulation, and TG mice developed cardiomyopathy with age. "
    [Show abstract] [Hide abstract]
    ABSTRACT: High plasma homocysteine levels are a known risk factor in heart failure and sudden cardiac death. The G proteins, G(s) (stimulatory) and G(i) (inhibitory), are involved in calcium regulation; overexpression has pathological consequences. The aims of this study were to examine the differential expression of G(s) G protein and G(i) in the hearts of hyperhomocysteinemic (Hhcy) mice, and to determine if homocysteine (Hcy) acts as an agonist in cell culture to mediate the change in G protein isoforms. To create Hhcy, heterozygous cystathionine-beta-synthase (CBS) knockout (KO) mice were used. Mice were sacrificed, hearts were excised, cardiac tissue homogenates were prepared, and Western blots were performed. The results suggested that G(s) G protein was downregulated in cardiac tissue of heterozygous CBS KO mice to 46% that of control hearts. However, the intracellular G(i) G protein content remained the same in heterozygous CBS KO mice. Transformed cardiomyocyte HL-1 cells were treated with varying concentrations of homocysteine. The results suggested no detectable differential G(s) and G(i) expression. This suggested that Hcy did not act as an agonist in vitro to alter G protein content, but that Hcy produced some other in vivo effects to incur these results.
    Vascular Health and Risk Management 02/2009; 5(1):79-84.
  • Source
    • "cRNA was synthesized as described (Dascal and Lotan 1992). The following plasmid vectors were used as described previously: m2 R, β2AR (Fidler-Lim et al. 1995); Gαs (Blumenstein et al. 1999); GIRK1 wt, GIRK2wt, GIRK4wt ( Silverman et al. 1996); CFTR ( Uezono et al. 1993); Gβ2 and Gγ1 (Jing et al. 1999). The cDNA of β2AR PF was obtained from Y. Daaka (Daaka et al. 1997) and subcloned into the pGEMHE vector (Liman et al. 1992). "
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate possible effects of adrenergic stimulation on G protein-activated inwardly rectifying K(+) channels (GIRK), acetylcholine (ACh)-evoked K(+) current, I(KACh), was recorded from adult rat atrial cardiomyocytes using the whole cell patch clamp method and a fast perfusion system. The rise time of I(KACh ) was 0. 4 +/- 0.1 s. When isoproterenol (Iso) was applied simultaneously with ACh, an additional slow component (11.4 +/- 3.0 s) appeared, and the amplitude of the elicited I(KACh) was increased by 22.9 +/- 5.4%. Both the slow component of activation and the current increase caused by Iso were abolished by preincubation in 50 microM H89 (N-[2-((p -bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, a potent inhibitor of PKA). This heterologous facilitation of GIRK current by beta-adrenergic stimulation was further studied in Xenopus laevis oocytes coexpressing beta(2)-adrenergic receptors, m(2 )-receptors, and GIRK1/GIRK4 subunits. Both Iso and ACh elicited GIRK currents in these oocytes. Furthermore, Iso facilitated ACh currents in a way, similar to atrial cells. Cytosolic injection of 30-60 pmol cAMP, but not of Rp-cAMPS (a cAMP analogue that is inhibitory to PKA) mimicked the beta(2)-adrenergic effect. The possibility that the potentiation of GIRK currents was a result of the phosphorylation of the beta-adrenergic receptor (beta(2)AR) by PKA was excluded by using a mutant beta(2)AR in which the residues for PKA-mediated modulation were mutated. Overexpression of the alpha subunit of G proteins (Galpha(s)) led to an increase in basal as well as agonist-induced GIRK1/GIRK4 currents (inhibited by H89). At higher levels of expressed Galpha(s), GIRK currents were inhibited, presumably due to sequestration of the beta/gamma subunit dimer of G protein. GIRK1/GIRK5, GIRK1/GIRK2, and homomeric GIRK2 channels were also regulated by cAMP injections. Mutant GIRK1/GIRK4 channels in which the 40 COOH-terminal amino acids (which contain a strong PKA phosphorylation consensus site) were deleted were also modulated by cAMP injections. Hence, the structural determinant responsible is not located within this region. We conclude that, both in atrial myocytes and in Xenopus oocytes, beta-adrenergic stimulation potentiates the ACh-evoked GIRK channels via a pathway that involves PKA-catalyzed phosphorylation downstream from beta(2)AR.
    The Journal of General Physiology 06/2000; 115(5):547-58. · 4.79 Impact Factor
  • Source

    The Journal of General Physiology 04/2000; 115(5):547-558. DOI:10.1085/jgp.115.5.547 · 4.79 Impact Factor
Show more