Article

Male gametic cell-specific gene expression in flowering plants.

Plant Molecular Biology and Biotechnology Laboratory, Institute of Land and Food Resources, University of Melbourne, Parkville, Victoria 3052, Australia.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/1999; 96(5):2554-8. DOI: 10.1073/pnas.96.5.2554
Source: PubMed

ABSTRACT The role of the male gamete-the sperm cell-in the process of fertilization is to recognize, adhere to, and fuse with the female gamete. These highly specialized functions are expected to be controlled by activation of a unique set of genes. However, male gametic cells traditionally have been regarded as transcriptionally quiescent because of highly condensed chromatin and a very reduced amount of cytoplasm. Here, we provide evidence for male gamete-specific gene expression in flowering plants. We identified and characterized a gene, LGC1, which was shown to be expressed exclusively in the male gametic cells. The gene product of LGC1 was localized at the surface of male gametic cells, suggesting a possible role in sperm-egg interactions. These findings represent an important step toward defining the molecular mechanisms of male gamete development and the cellular processes involved in fertilization of flowering plants.

0 Bookmarks
 · 
74 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Promoters can direct gene expression specifically to targeted tissues or cells. Effective with both crop species and model plant systems, these tools can help researchers overcome the practical obstacles associated with transgenic protocols. Here, we identified promoters that allow one to target the manipulation of gene expression during pollen development. Utilizing published transcriptomic databases for rice, we investigated the promoter activity of selected genes in Arabidopsis. From various microarray datasets, including those for anthers and pollen grains at different developmental stages, we selected nine candidate genes that showed high levels of expression in the late stages of rice pollen development. We named these Oryza sativa late pollen-specific genes. Their promoter regions contained various cis-acting elements that could be responsible for anther-/pollen-specific expression. Promoter::GUS-GFP reporters were constructed and introduced into Arabidopsis plants. Histochemical GUS staining revealed that six of the nine rice promoters conferred strong GUS expression that was restricted to the anthers in Arabidopsis. Further analysis showed that although the GUS signals were not detected at the unicellular stage, they strengthened in the bicellular or tricellular stages, peaking at the mature pollen stage. This paralleled their transcriptomic profiles in rice. Based on our results, we proposed that these six rice promoters, which are active in the late stages of pollen formation in the dicot Arabidopsis, can aid molecular breeders in generating new varieties of a monocot plant, rice.
    Plant reproduction. 02/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although a number of genes that play key roles during the meiotic process have been characterized in great detail, the whole process of meiosis is still not completely unraveled. To gain insight into the bigger picture, large-scale approaches like RNA-seq and microarray can help to elucidate the transcriptome landscape during plant meiosis, discover co-regulated genes, enriched processes, and highly expressed known and unknown genes which might be important for meiosis. These high-throughput studies are gaining more and more popularity, but their beginnings in plant systems reach back as far as the 1960's. Frequently, whole anthers or post-meiotic pollen were investigated, while less data is available on isolated cells during meiosis, and only few studies addressed the transcriptome of female meiosis. For this review, we compiled meiotic transcriptome studies covering different plant species, and summarized and compared their key findings. Besides pointing to consistent as well as unique discoveries, we finally draw conclusions what can be learned from these studies so far and what should be addressed next.
    Frontiers in Plant Science 01/2014; 5:220. · 3.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Anther is the major organ of flower in responsible to reproduction and outward appearance. From anther-specific cDNA library of Lilium Oriental Hybrid 'Acapulco', 2000 expressed sequence tags were selected randomly. Differential slot blot analysis with cDNA probes from the anther and leaf was used to get anther-expressed clone and 570 non-redundant ESTs were obtained and sequenced. Compared to the GenBank database using BLASTX algorithm, 191 clones showed significant similarity but others (66.5%) did not measured to known sequence. Functional categories according to gene ontology (GO) annotation included sequence representing a significant portion of protein in cell and cell part respectively. A transcriptional analysis at 7 different organs and developmental stage was performed using northern blot with thirty ESTs as putative anther specific gene. This report suggest that selection of anther expressed clone using differential slot blot was considered as very effective tool and our current study can provide fundamental information on the lily anther including pollen furthermore.
    Wonye kwahak kisulchi = Korean journal of horticultural science and technology / 01/2013; 31(5). · 0.33 Impact Factor

Full-text (2 Sources)

Download
23 Downloads
Available from
May 29, 2014