Article

Cell cycle-dependent expression and centrosome localization of a third human Aurora/Ip11-related protein kinase, AIK3

Department of Molecular Pathobiochemistry, Gifu University School of Medicine, Tsukasamachi-40, Gifu 500-8705, Japan.
Journal of Biological Chemistry (Impact Factor: 4.6). 04/1999; 274(11):7334-40. DOI: 10.1074/jbc.274.11.7334
Source: PubMed

ABSTRACT We earlier isolated cDNAs encoding novel human protein kinases AIK and AIK2 sharing high amino acid sequence identities with Drosophila Aurora and Saccharomyces cerevisiae Ipl1 kinases whose mutations cause abnormal chromosome segregation. In the present study, a third human cDNA (AIK3) highly homologous to aurora/IPL1 was isolated, and the nucleotide sequence was determined. This cDNA encodes 309 amino acids with a predicted molecular mass of 35.9 kDa. C-terminal kinase domain of AIK3 protein shares high amino acid sequence identities with those of Aurora/Ipl1 family protein kinases including human AIK, human AIK2, Xenopus pEg2, Drosophila Aurora, and yeast Ipl1, whereas the N-terminal domain of AIK3 protein shares little homology with any other Aurora/Ipl1 family members. AIK3 gene was assigned to human chromosome 19q13.43, which is a frequently deleted or rearranged region in several tumor tissues, by fluorescence in situ hybridization, somatic cell hybrid panel, and radiation hybrid cell panel. Northern blot analyses revealed that AIK3 expression was limited to testis. The expression levels of AIK3 in several cancer cell lines were elevated severalfold compared with normal fibroblasts. In HeLa cells, the endogenous AIK3 protein level is low in G1/S, accumulates during G2/M, and reduces after mitosis. Immunofluorescence studies using a specific antibody have shown that AIK3 is localized to centrosome during mitosis from anaphase to cytokinesis. These results suggest that AIK3 may play a role(s) in centrosome function at later stages of mitosis.

0 Bookmarks
 · 
72 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Teratozoospermia is characterized by the presence of spermatozoa with abnormal morphology over 85 % in sperm. When all the spermatozoa display a unique abnormality, teratozoospermia is said to be monomorphic. Two forms of monomorphic teratozoospermia, representing less than 1 % of male infertility, are recognized: macrozoospermia (also called macrocephalic sperm head syndrome) and globozoospermia (also called round-headed sperm syndrome). Macrozoospermia is defined as the presence of a very high percentage of spermatozoa with enlarged head and multiple flagella. Meiotic segregation studies in 30 males revealed that over 90 % of spermatozoa were aneuploid, mainly diploid. Sperm DNA fragmentation studies performed in a few patients showed an increase in DNA fragmentation index compared to fertile men. Four mutations in the AURKC gene, a key player in meiosis and more particularly in spermatogenesis, have been found to be responsible for macrozoospermia. Globozoospermia is characterized by round-headed spermatozoa with an absent acrosome, an aberrant nuclear membrane and midpiece defects. The rate of aneuploidy of various chromosomes in spermatozoa from 26 globozoospermic men was slightly increased compared to fertile men. However, this increase was of the same order as that commonly found in infertile men with altered sperm parameters. The majority of the studies found that globozoospermic males had a sperm DNA fragmentation index higher than in fertile men. Mutations or deletions in three genes, SPATA16, PICK1 and DPY19L2, have been shown to be responsible for globozoospermia. Identification of the genetic causes of macrozoospermia and globozoospermia should help refine diagnosis and treatment of these patients, avoiding long and painful treatments. Elucidating the molecular causes of these defects is of utmost importance as intracytoplasmic sperm injection (ICSI) is very disappointing in these two pathologies.
    Journal of Assisted Reproduction and Genetics 02/2015; DOI:10.1007/s10815-015-0433-2 · 1.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Aurora kinases, which include Aurora A (AURKA), Aurora B (AURKB) and Aurora C (AURKC), are serine/threonine kinases required for the control of mitosis (AURKA and AURKB) and meiosis (AURKC). Since their discovery nearly 20 years ago, Aurora kinases have been studied extensively in cell and cancer biology. Several early studies found that Aurora kinases are amplified and overexpressed at the transcript and protein level in various malignancies, including several types of leukemia. These discoveries and others provided a rationale for the development of small-molecule inhibitors of Aurora kinases as leukemia therapies. The first generation of Aurora kinase inhibitors did not fare well in clinical trials, owing to poor efficacy and high toxicity. However, the creation of second-generation, highly selective Aurora kinase inhibitors has increased the enthusiasm for targeting these proteins in leukemia. This review will describe the functions of each Aurora kinase, summarize their involvement in leukemia and discuss inhibitor development and efficacy in leukemia clinical trials.Oncogene advance online publication, 17 March 2014; doi:10.1038/onc.2014.14.
    Oncogene 03/2014; DOI:10.1038/onc.2014.14 · 8.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anaplastic thyroid cancers (ATC) are among the most aggressive human neoplasms with a dire prognosis and a median survival time of few months from the diagnosis. The complete absence of effective therapies for ATC renders the identification of novel therapeutic approaches sorely needed. Chromosomal instability, a feature of all human cancers, is thought to represent a major driving force in thyroid cancer progression and a number of mitotic kinases showing a deregulated expression in malignant thyroid tissues are now held responsible for thyroid tumor aneuploidy. These include the three members of the Aurora family (Aurora-A, Aurora-B, and Aurora-C), serine/threonine kinases that regulate multiple aspects of chromosome segregation and cytokinesis. Over the last few years, several small molecule inhibitors targeting Aurora kinases were developed, which showed promising antitumor effects against a variety of human cancers, including ATC, in preclinical studies. Several of these molecules are now being evaluated in phase I/II clinical trials against advanced solid and hematological malignancies. In the present review we will describe the structure, expression, and mitotic functions of the Aurora kinases, their implications in human cancer progression, with particular regard to ATC, and the effects of their functional inhibition on malignant cell proliferation.
    International Journal of Endocrinology 07/2014; 2014:816430. DOI:10.1155/2014/816430 · 1.52 Impact Factor
    This article is viewable in ResearchGate's enriched format