Article

Cellular and molecular characterization of the scurfy mouse mutant.

Chiroscience R&D, Inc., Seattle, WA 98021, USA.
The Journal of Immunology (Impact Factor: 5.36). 04/1999; 162(5):2546-54.
Source: PubMed

ABSTRACT Mice hemizygous (Xsf/Y) for the X-linked mutation scurfy (sf) develop a severe and rapidly fatal lymphoproliferative disease mediated by CD4+CD8- T lymphocytes. We have undertaken phenotypic and functional studies to more accurately identify the immunologic pathway(s) affected by this important mutation. Flow cytometric analyses of lymphoid cell populations reveal that scurfy syndrome is characterized by changes in several phenotypic parameters, including an increase in Mac-1+ cells and a decrease in B220+ cells, changes that may result from the production of extremely high levels of the cytokine granulocyte-macrophage CSF by scurfy T cells. Scurfy T cells also exhibit strong up-regulation of cell surface Ags indicative of in vivo activation, including CD69, CD25, CD80, and CD86. Both scurfy and normal T cells are responsive to two distinct signals provided by the TCR and by ligation of CD28; scurfy cells, however, are hyperresponsive to TCR ligation and exhibit a decreased requirement for costimulation through CD28 relative to normal controls. This hypersensitivity may result, in part, from increased costimulation through B7-1 and B7-2, whose expression is up-regulated on scurfy T cells. Although the specific defect leading to this hyperactivation has not been identified, we also demonstrate that scurfy T cells are less sensitive than normal controls to inhibitors of tyrosine kinases such as genistein and herbimycin A, and the immunosuppressant cyclosporin A. One interpretation of our data would suggest that the scurfy mutation results in a defect, which interferes with the normal down-regulation of T cell activation.

0 Followers
 · 
64 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: CD4(-)CD8(-)double negative (DN) αβ T cells are legitimate components of the normal immune system. However, they are poorly understood and largely ignored by immunologists because of their historical association with the lymphoproliferation that occurs in mice (lpr and gld) and humans (autoimmune lymphoproliferative syndromes patients) with impaired Fas-mediated apoptosis where they are considered abnormal T cells. We believe that the traditional view that DN T cells that cause lymphoproliferation (hereafter referred to as lpr DN T cells) are CD4 and CD8 T cells that lost their coreceptor, conceived more than two decades ago, is flawed and that conflating lpr DN T cells with DN T cells found in normal immune system (hereafter referred to as nDN T cells) is unnecessarily dampening interest of this potentially important cell type. To begin rectifying these misperceptions, we will revisit the traditional view of lpr DN T cells and show that it does not hold true in light of recent immunological advances. In lieu of it, we offer a new model proposing that Fas-mediated apoptosis actively removes normally existing DN T cells from the periphery and that impaired Fas-mediated apoptosis leads to accumulation of these cells rather than de novo generation of DN T cells from activated CD4 or CD8 T cells. By doing so, we hope to provoke a new discussion that may lead to a consensus about the origin of lpr DN T cells and regulation of their homeostasis by the Fas pathway and reignite wider interest in nDN T cells.Immunology and Cell Biology advance online publication, 25 November 2014; doi:10.1038/icb.2014.99.
    Immunology and Cell Biology 11/2014; 93(3). DOI:10.1038/icb.2014.99 · 4.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD28 costimulation is essential for the development of thymic-derived CD4(+)CD25(+)Foxp3(+) regulatory T cells ("tTregs"). E3 ubiquitin ligase Cbl-b has been shown to regulate CD28 dependence of T cell activation. In this paper, we report that the loss of Cbl-b partially but significantly rescues the defective development of tTregs in Cd28(-/-) mice. This partial rescue is independent of IL-2. Mechanistically, Cbl-b binds to Foxp3 upon TCR stimulation and, together with Stub1, targets Foxp3 for ubiquitination and subsequently degradation in the proteasome. As Cbl-b self-ubiquitination and proteasomal degradation is impaired in Cd28(-/-) T cells, the defective development of tTregs in Cd28(-/-) mice may in part be due to increased Foxp3 ubiquitination and degradation targeted by Stub1 and Cbl-b. Treating Cd28(-/-) mice with a proteasome inhibitor completely rescues defective tTreg development in these mice. Therefore, Cbl-b, together with Stub1, ubiquitinate Foxp3, and regulate tTreg development. Copyright © 2015 by The American Association of Immunologists, Inc.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report here on the clinical, histological and immunological findings regarding a patient with immunodysregulation polyendocrinopathy enteropathy X-linked syndrome who was treated for the first 21years with a combination of immunosuppressant agents (IS). The potential modalities of care and treatment options in this rare and severe immune-mediated disorder are discussed. So, long-term outcome for IPEX patients can be obtained with immunosuppressive treatment, which is important since the outcome of haematopoietic stem cell transplantation for this population is variable. Copyright © 2015. Published by Elsevier Masson SAS.
    Gastroentérologie Clinique et Biologique 05/2015; DOI:10.1016/j.clinre.2015.03.006 · 1.98 Impact Factor

Preview

Download
3 Downloads
Available from