Article

Cellular and molecular characterization of the scurfy mouse mutant.

Chiroscience R&D, Inc., Seattle, WA 98021, USA.
The Journal of Immunology (Impact Factor: 5.36). 04/1999; 162(5):2546-54.
Source: PubMed

ABSTRACT Mice hemizygous (Xsf/Y) for the X-linked mutation scurfy (sf) develop a severe and rapidly fatal lymphoproliferative disease mediated by CD4+CD8- T lymphocytes. We have undertaken phenotypic and functional studies to more accurately identify the immunologic pathway(s) affected by this important mutation. Flow cytometric analyses of lymphoid cell populations reveal that scurfy syndrome is characterized by changes in several phenotypic parameters, including an increase in Mac-1+ cells and a decrease in B220+ cells, changes that may result from the production of extremely high levels of the cytokine granulocyte-macrophage CSF by scurfy T cells. Scurfy T cells also exhibit strong up-regulation of cell surface Ags indicative of in vivo activation, including CD69, CD25, CD80, and CD86. Both scurfy and normal T cells are responsive to two distinct signals provided by the TCR and by ligation of CD28; scurfy cells, however, are hyperresponsive to TCR ligation and exhibit a decreased requirement for costimulation through CD28 relative to normal controls. This hypersensitivity may result, in part, from increased costimulation through B7-1 and B7-2, whose expression is up-regulated on scurfy T cells. Although the specific defect leading to this hyperactivation has not been identified, we also demonstrate that scurfy T cells are less sensitive than normal controls to inhibitors of tyrosine kinases such as genistein and herbimycin A, and the immunosuppressant cyclosporin A. One interpretation of our data would suggest that the scurfy mutation results in a defect, which interferes with the normal down-regulation of T cell activation.

0 Bookmarks
 · 
58 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD28 costimulation is essential for the development of thymic-derived CD4(+)CD25(+)Foxp3(+) regulatory T cells ("tTregs"). E3 ubiquitin ligase Cbl-b has been shown to regulate CD28 dependence of T cell activation. In this paper, we report that the loss of Cbl-b partially but significantly rescues the defective development of tTregs in Cd28(-/-) mice. This partial rescue is independent of IL-2. Mechanistically, Cbl-b binds to Foxp3 upon TCR stimulation and, together with Stub1, targets Foxp3 for ubiquitination and subsequently degradation in the proteasome. As Cbl-b self-ubiquitination and proteasomal degradation is impaired in Cd28(-/-) T cells, the defective development of tTregs in Cd28(-/-) mice may in part be due to increased Foxp3 ubiquitination and degradation targeted by Stub1 and Cbl-b. Treating Cd28(-/-) mice with a proteasome inhibitor completely rescues defective tTreg development in these mice. Therefore, Cbl-b, together with Stub1, ubiquitinate Foxp3, and regulate tTreg development. Copyright © 2015 by The American Association of Immunologists, Inc.
    Journal of immunology (Baltimore, Md. : 1950). 01/2015;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Foxp3(+) T regulatory (Treg) cells prevent inflammatory disease but the mechanistic basis of suppression is not understood completely. Gene silencing by RNA interference can act in a cell-autonomous and non-cell-autonomous manner, providing mechanisms of intercellular regulation. Here, we demonstrate that non-cell-autonomous gene silencing, mediated by miRNA-containing exosomes, is a mechanism employed by Treg cells to suppress T-cell-mediated disease. Treg cells transferred microRNAs (miRNA) to various immune cells, including T helper 1 (Th1) cells, suppressing Th1 cell proliferation and cytokine secretion. Use of Dicer-deficient or Rab27a and Rab27b double-deficient Treg cells to disrupt miRNA biogenesis or the exosomal pathway, respectively, established a requirement for miRNAs and exosomes for Treg-cell-mediated suppression. Transcriptional analysis and miRNA inhibitor studies showed that exosome-mediated transfer of Let-7d from Treg cell to Th1 cells contributed to suppression and prevention of systemic disease. These studies reveal a mechanism of Treg-cell-mediated suppression mediated by miRNA-containing exosomes.
    Immunity 07/2014; 41(1):89-103. · 19.75 Impact Factor

Preview

Download
0 Downloads
Available from