Article

Defective high-affinity thiamine transporter leads to cell death in thiamine-responsive megaloblastic anemia syndrome fibroblasts.

Division of Hematology/Oncology, Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
Journal of Clinical Investigation (Impact Factor: 13.77). 04/1999; 103(5):723-9. DOI: 10.1172/JCI3895
Source: PubMed

ABSTRACT We have investigated the cellular pathology of the syndrome called thiamine-responsive megaloblastic anemia (TRMA) with diabetes and deafness. Cultured diploid fibroblasts were grown in thiamine-free medium and dialyzed serum. Normal fibroblasts survived indefinitely without supplemental thiamine, whereas patient cells died in 5-14 days (mean 9.5 days), and heterozygous cells survived for more than 30 days. TRMA fibroblasts were rescued from death with 10-30 nM thiamine (in the range of normal plasma thiamine concentrations). Positive terminal deoxynucleotide transferase-mediated dUTP nick end-labeling (TUNEL) staining suggested that cell death was due to apoptosis. We assessed cellular uptake of [3H]thiamine at submicromolar concentrations. Normal fibroblasts exhibited saturable, high-affinity thiamine uptake (Km 400-550 nM; Vmax 11 pmol/min/10(6) cells) in addition to a low-affinity unsaturable component. Mutant cells lacked detectable high-affinity uptake. At 30 nM thiamine, the rate of uptake of thiamine by TRMA fibroblasts was 10-fold less than that of wild-type, and cells from obligate heterozygotes had an intermediate phenotype. Transfection of TRMA fibroblasts with the yeast thiamine transporter gene THI10 prevented cell death when cells were grown in the absence of supplemental thiamine. We therefore propose that the primary abnormality in TRMA is absence of a high-affinity thiamine transporter and that low intracellular thiamine concentrations in the mutant cells cause biochemical abnormalities that lead to apoptotic cell death.

1 Follower
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinal abnormality and visual disturbances occur in thiamine-responsive megaloblastic anaemia (TRMA), an autosomal recessive disorder caused by mutations in the human thiamine transporter-1 (hTHTR-1). Human retinal pigment epithelial cells play a pivotal role in supplying thiamine to the highly metabolically active retina but nothing is known about the mechanism, regulation or biological processes involved in thiamine transport in these cells. To address these issues, we used human-derived retinal pigment epithelial ARPE-19 cells to characterize the thiamine uptake process. Thiamine uptake is energy- and temperature-dependent, pH-sensitive, Na+-independent, saturable at both the nanomolar (apparent Km, 30 +/- 5 nM) and the micromolar (apparent Km, 1.72 +/- 0.3 microM) concentration ranges, specific for thiamine and sensitive to sulfhydryl group inhibition. The diuretic amiloride caused a concentration-dependent inhibition in thiamine uptake, whereas the anti-trypanosomal drug, melarsoprol, failed to affect the uptake process. Both hTHTR-1 and hTHTR-2 are expressed in ARPE-19 cells as well as in native human retinal tissue with expression of the former being significantly higher than that of the latter. Uptake of thiamine was adaptively regulated by extracellular substrate level via transcriptionally mediated mechanisms that involve both hTHTR-1 and hTHTR-2; it was also regulated by an intracellular Ca2+-calmodulin-mediated pathway. Confocal imaging of living ARPE-19 cells expressing TRMA-associated hTHTR-1 mutants (D93H, S143F and G172D) showed various expression phenotypes. These results demonstrate for the first time the existence of a specialized and regulated uptake process for thiamine in a cellular model of human retinal pigment epithelia that involves hTHTR-1 and hTHTR-2. Further, clinically relevant mutations in hTHTR-1 lead to impaired cell surface expression or function of the transporter in retinal epithelial ARPE-19 cells.
    The Journal of Physiology 08/2007; 582(Pt 1):73-85. DOI:10.1113/jphysiol.2007.128843 · 4.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thiamine-responsive megaloblastic anaemia (TRMA) syndrome with diabetes and deafness was found in two patients from a Tunisian kindred. The proband was homozygous for a novel mutation, 287delG, in the high-affinity thiamine transporter gene, SLC19A2. We demonstrated that fibroblasts from this patient exhibited defective thiamine transport. These data confirm that the SLC19A2 gene is the high-affinity thiamine carrier and that this novel mutation is responsible for TRMA syndrome.
    British Journal of Haematology 06/2001; 113(2):508-13. DOI:10.1046/j.1365-2141.2001.02774.x · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thiamine-responsive megaloblastic anemia syndrome is an autosomal recessive disorder characterized by diabetes mellitus, megaloblastic anemia and sensorineural hearing loss. Mutations in the SLC19A2 gene, encoding a high-affinity thiamine transporter protein, THTR-1, are responsible for the clinical features associated with thiamine-responsive megaloblastic anemia syndrome in which treatment with pharmacological doses of thiamine correct the megaloblastic anemia and diabetes mellitus. The anemia can recur when thiamine is withdrawn. Thiamine may be effective in preventing deafness if started before two months. Our patient was found homozygous for a mutation, 242insA, in the nucleic acid sequence of exon B, with insertion of an adenine introducing a stop codon at codon 52 in the high-affinity thiamine transporter gene, SLC19A2, on chromosome 1q23.3.
    The Turkish journal of pediatrics 51(3):301-4. · 0.56 Impact Factor

Preview

Download
0 Downloads
Available from