Retinoids inhibit interleukin-12 production in macrophages through physical associations of retinoid X receptor and NFkappaB.

Department of Biology, Chonnam National University, Kwangju 500-757, Korea.
Journal of Biological Chemistry (Impact Factor: 4.6). 04/1999; 274(12):7674-80. DOI: 10.1074/jbc.274.12.7674
Source: PubMed

ABSTRACT Lipopolysaccharide (LPS) increases the production of interleukin-12 (IL-12) from mouse macrophages via a kappaB site within the IL-12 p40 promoter. In this study, we found that retinoids inhibit this LPS-stimulated production of IL-12 in a dose-dependent manner. The NFkappaB components p50 and p65 bound retinoid X receptor (RXR) in a ligand-independent manner in vitro, and the interaction interfaces involved the p50 residues 1-245, the p65 residues 194-441, and the N-terminal A/B/C domains of RXR. Activation of macrophages by LPS resulted in markedly enhanced binding activities to the kappaB site, which significantly decreased upon addition of retinoids, as demonstrated by the electrophoretic mobility shift assays. In cotransfections of CV-1 and HeLa cells, RXR also inhibited the NFkappaB transactivation in a ligand-dependent manner, whereas a mutant RXR lacking the AF2 transactivation domain, which serves as ligand-dependent binding sites for transcription integrators SRC-1 and p300, was without any effect. In addition, coexpression of increasing amounts of SRC-1 or p300 relieved the retinoid-mediated inhibition of the NFkappaB transactivation. From these results, we propose that retinoid-mediated suppression of the IL-12 production from LPS-activated macrophages may involve both inhibition of the NFkappaB-DNA interactions and competitive recruitment of transcription integrators between NFkappaB and RXR.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The retinoid X receptor α (RXRα), a key nuclear receptor in metabolic processes, is downregulated during host antiviral response. However, the roles of RXRα in host antiviral response are unknown. Here we show that RXRα overexpression or ligand activation increases host susceptibility to viral infections in vitro and in vivo, while Rxra-/- or antagonist treatment reduces infection by the same viruses. Consistent with these functional studies, ligand activation of RXR inhibits the expression of antiviral genes including type I interferon (IFN) and Rxra-/- macrophages produce more IFNβ than WT macrophages in response to polyI:C stimulation. Further results indicate that ligand activation of RXR suppresses the nuclear translocation of β-catenin, a co-activator of IFNβ enhanceosome. Thus, our studies have uncovered a novel RXR-dependent innate immune regulatory pathway, suggesting that the downregulation of RXR expression or RXR antagonist treatment benefits host antiviral response, whereas RXR agonist treatment may increase the risk of viral infections.
    Nature Communications 11/2014; 5:5494. DOI:10.1038/ncomms6494 · 10.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An increasing recognition has emerged of the complexities of the global health agenda-specifically, the collision of infections and noncommunicable diseases and the dual burden of over- and undernutrition. Of particular practical concern are both 1) the need for a better understanding of the bidirectional relations between nutritional status and the development and function of the immune and inflammatory response and 2) the specific impact of the inflammatory response on the selection, use, and interpretation of nutrient biomarkers. The goal of the Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE) is to provide guidance for those users represented by the global food and nutrition enterprise. These include researchers (bench and clinical), clinicians providing care/treatment, those developing and evaluating programs/interventions at scale, and those responsible for generating evidence-based policy. The INSPIRE process included convening 5 thematic working groups (WGs) charged with developing summary reports around the following issues: 1) basic overview of the interactions between nutrition, immune function, and the inflammatory response; 2) examination of the evidence regarding the impact of nutrition on immune function and inflammation; 3) evaluation of the impact of inflammation and clinical conditions (acute and chronic) on nutrition; 4) examination of existing and potential new approaches to account for the impact of inflammation on biomarker interpretation and use; and 5) the presentation of new approaches to the study of these relations. Each WG was tasked with synthesizing a summary of the evidence for each of these topics and delineating the remaining gaps in our knowledge. This review consists of a summary of the INSPIRE workshop and the WG deliberations. © 2015 American Society for Nutrition.
    Journal of Nutrition 04/2015; DOI:10.3945/jn.114.194571 · 4.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The primary etiology of CKD is a direct consequence of initial dysfunction and injury of the glomerulus, the main filtration system. Podocytes are terminally differentiated epithelial cells in the glomerulus, whose major function is the maintenance of this renal filtration barrier. Podocyte injury is implicated in many glomerular diseases including focal segmental glomerular sclerosis and HIV-associated nephropathy. In many of these diseased conditions, the podocyte can either undergo dedifferentiation and proliferation, apoptosis, or cell detachment. Regardless of the initial type of injury, the podocyte ultimately loses its functional capacity to maintain the glomerular filtration barrier. Significant injury resulting in a loss of the podocytes and failure to maintain the renal filtration barrier contributes to progressive kidney disease. Consequently, therapies that prevent podocyte injury and promote their regeneration will have a major clinical impact on glomerular disease. Retinoic acid (RA), which is a derivative of vitamin A, has many cellular functions including induction of cell differentiation, regulation of apoptosis, and inhibition of inflammation and proliferation. RA is required for kidney development and is essential for cellular differentiation in the setting of podocyte injury. The mechanism by which RA directs its beneficial effects is multifactorial, ranging from its anti-inflammatory and anti-fibrotic effects to a direct effect of upregulating podocyte differentiation markers in the podocyte. The focus of this review is to provide an overview of RA in kidney development and glomerular disease. We also highlight the key mechanism(s) by which RA restores podocyte differentiation markers and ameliorates glomerular disease.
    01/2015; 2:16. DOI:10.3389/fmed.2015.00016

Similar Publications