Article

Heterogeneous spectrum of mutations in the Fanconi anaemia group A gene.

Department of Human Genetics, Free University of Amsterdam, The Netherlands.
European Journal of HumanGenetics (Impact Factor: 4.23). 02/1999; 7(1):52-9. DOI: 10.1038/sj.ejhg.5200248
Source: PubMed

ABSTRACT Fanconi anaemia (FA) is a genetically heterogeneous autosomal recessive disorder associated with chromosomal fragility, bone-marrow failure, congenital abnormalities and cancer. The gene for complementation group A (FAA), which accounts for 60-65% of all cases, has been cloned, and is composed of an open reading frame of 4.3 kb, which is distributed among 43 exons. We have investigated the molecular pathology of FA by screening the FAA gene for mutations in a panel of 90 patients identified by the European FA research group, EUFAR. A highly heterogeneous spectrum of mutations was identified, with 31 different mutations being detected in 34 patients. The mutations were scattered throughout the gene, and most are likely to result in the absence of the FAA protein. A surprisingly high frequency of intragenic deletions was detected, which removed between 1 and 30 exons from the gene. Most microdeletions and insertions occurred at homopolymeric tracts or direct repeats within the coding sequence. These features have not been observed in the other FA gene which has been cloned to date (FAC) and may be indicative of a higher mutation rate in FAA. This would explain why FA group A is much more common than the other complementation groups. The heterogeneity of the mutation spectrum and the frequency of intragenic deletions present a considerable challenge for the molecular diagnosis of FA. A scan of the entire coding sequence of the FAA gene may be required to detect the causative mutations, and scanning protocols will have to include methods which will detect the deletions in compound heterozygotes.

0 Followers
 · 
230 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The encouraging response rates of BRCA1- and BRCA2-mutated cancers toward PARP inhibitors make it worthwhile to identify other potential determinants of PARP inhibitor responsiveness. Since the Fanconi anemia (FA) pathway coordinates several DNA repair pathways, including homologous recombination in which BRCA1 and BRCA2 play important roles, we investigated whether this pathway harbors other predictors of PARP inhibitor sensitivity. Lymphoblastoid cell lines derived from individuals with FA or clinically related syndromes, such as Warsaw breakage syndrome, were tested for PARP inhibitor sensitivity. Remarkably, we found a strong variability in PARP inhibitor sensitivity among different FANCD1/BRCA2-deficient lymphoblasts, suggesting that PARP inhibitor response depends on the type of FANCD1/BRCA2 mutation. We identified the DNA helicases FANCM and DDX11 as determinants of PARP inhibitor response. These results may extend the utility of PARP inhibition as effective anticancer treatment. Copyright © 2014 Elsevier B.V. All rights reserved.
    DNA Repair 12/2014; 26. DOI:10.1016/j.dnarep.2014.12.003 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The incidence of esophageal squamous cell carcinoma (ESCC) is very high in northeastern Iran. Previously, we reported a strong familial component of ESCC among Turkmens, who constitute approximately one-half of the population of this region. We hypothesized that the genes which cause Fanconi anemia might be candidate genes for ESCC. We sequenced the entire coding regions of 12 Fanconi anemia genes in the germline DNA of 190 Turkmen cases of ESCC. We identified three heterozygous insertion/deletion mutations: one in FANCD2 (p.Val1233del), one in FANCE (p.Val311SerfsX2), and one in FANCL (p.Thr367AsnfsX13). All three patients had a strong family history of ESCC. In addition, four patients (out of 746 tested) were homozygous for the FANCA p.Ser858Arg mutation, compared to none of 1,373 matched controls (OR = 16.7, 95% CI = 6.2-44.2, P = 0.01). The p. Lys3326X mutation in BRCA2 (also known as Fanconi anemia gene FANCD1) was present in 27 of 746 ESCC cases and in 16 of 1,373 controls (OR = 3.38, 95% CI = 1.97-6.91, P = 0.0002). In summary, both heterozygous and homozygous mutations in several Fanconi anemia-predisposing genes are associated with an increased risk of ESCC in Iran.
    Human Genetics 05/2011; 129(5):573-82. DOI:10.1007/s00439-011-0951-7 · 4.52 Impact Factor
  • Source
    British Journal of Haematology 10/2008; 111(1):30-42. DOI:10.1111/j.1365-2141.2000.02263.x · 4.96 Impact Factor

Preview

Download
2 Downloads
Available from