Article

Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California.

United States Geological Survey, 3215 Marine Street, Boulder, CO 80303-1066, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.74). 04/1999; 96(7):3455-62. DOI:10.1073/pnas.96.7.3455
Source: PubMed

ABSTRACT The Richmond Mine of the Iron Mountain copper deposit contains some of the most acid mine waters ever reported. Values of pH have been measured as low as -3.6, combined metal concentrations as high as 200 g/liter, and sulfate concentrations as high as 760 g/liter. Copious quantities of soluble metal sulfate salts such as melanterite, chalcanthite, coquimbite, rhomboclase, voltaite, copiapite, and halotrichite have been identified, and some of these are forming from negative-pH mine waters. Geochemical calculations show that, under a mine-plugging remediation scenario, these salts would dissolve and the resultant 600,000-m3 mine pool would have a pH of 1 or less and contain several grams of dissolved metals per liter, much like the current portal effluent water. In the absence of plugging or other at-source control, current weathering rates indicate that the portal effluent will continue for approximately 3, 000 years. Other remedial actions have greatly reduced metal loads into downstream drainages and the Sacramento River, primarily by capturing the major acidic discharges and routing them to a lime neutralization plant. Incorporation of geochemical modeling and mineralogical expertise into the decision-making process for remediation can save time, save money, and reduce the likelihood of deleterious consequences.

0 0
 · 
0 Bookmarks
 · 
39 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed.
    Journal of hazardous materials 12/2013; · 4.14 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Abstract The Iron Mountain Mine Superfund Site near Redding, California, is a massive sulfide ore deposit that was mined for iron, silver, gold, copper, zinc, and pyrite intermittently for nearly 100 years. As a result, both water and air reached the sulfide deposits deep within the mountain, producing acid mine drainage consisting of sulfuric acid and heavy metals from the ore. Particularly, the drainage water from the Richmond Mine at Iron Mountain is among the most acidic waters naturally found on Earth. The mineralogy at Iron Mountain can serve as a proxy for understanding sulfate formation on Mars. Selected sulfate efflorescent salts from Iron Mountain, formed from extremely acidic waters via drainage from sulfide mining, have been characterized by means of Raman spectroscopy. Gypsum, ferricopiapite, copiapite, melanterite, coquimbite, and voltaite are found within the samples. This work has implications for Mars mineralogical and geochemical investigations as well as for terrestrial environmental investigations related to acid mine drainage contamination. Key Words: Acid mine drainage-Efflorescent sulfate minerals-Mars analogue-Iron Mountain-Laser Raman spectroscopy. Astrobiology 13, xxx-xxx.
    Astrobiology 03/2013; · 2.80 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Twelve massive sulphide deposits from the Iberian Pyrite Belt (IPB) show well-preserved iron caps, some of which were mined during the last century to recover precious metals (e.g., Tharsis, Rio Tinto, San Miguel). Field observations and correlation assays between the distinct mineral sequences at different deposits suggest that all the gossans were developed under similar conditions and have undergone the same geological events. All the gossans have a mushroom-like morphology in sharp contact with the underlying massive sulphide orebodies. In most cases these are located over an apparent supergene enrichment zone rich in secondary sulphides. Some gossans extend into tongues of alluvial heterolithic breccias consisting of eroded transported gossans displaced as far as several hundred meters away from their sources. The distribution of major minerals throughout the gossan profiles (goethite, hematite, quartz and jarosite) and the statistical analysis of the geochemical data distinguish three separate zones, with gradual contacts roughly parallel to the current topography: (1) the lower zone dominated by goethite and subordinate jarosite, with significant enrichment in S, As, P, Pb, Sn, Sb, Ag and Au; (2) the middle or principal zone dominated by goethite and lacking jarosite, which is depleted in S, and As, as well as heavy and precious metals; and (3) the upper zone near the surface, mainly composed of hematite and quartz with only weak anomalies in P, Pb and Sn. The origin and variations occurred in the profiles are explained by a three-stage process. This involves an initial acidic stage of gossan development centred on the oxidation of sulphides that lead to the formation of the first Fe-rich oxyhydroxides and sulphates (mainly goethite and jarosite, respectively). Over time, a progressive stage of maturity is reached progressively downwards through the gossan profile due to the intensification of the oxidation and leaching processes. The ongoing gossan formation produced alteration and reprecipitation of pre-existing oxyhydroxides, the loss of the majority of the previously sorbed heavy metals, and a major dilution of trace elements especially in the zones near the surface. The main results of this stage of formation are the production of heavy metal-depleted oxyhydroxides, most commonly goethite and hematite, and the disappearance of jarosite. Subsequently, local uplift of the gossanous rocks by neotectonic movements facilitated the rejuvenation of the oxidation of the ores. This final stage complicated the previously developed zonation with the formation of jarosite in mature areas. Possible major breaks in this gossan development ocurred in Messinian times (7–8 Ma) and at the beginning of the Early Quaternary (1–2 Ma?).
    Ore Geology Reviews 09/2013; 53:181-203. · 2.42 Impact Factor

Full-text (2 Sources)

View
9 Downloads
Available from
Mar 28, 2013