Cryobiophysical characteristics of genetically modified hematopoietic progenitor cells.

Biomedical Engineering Center, University of Minnesota, Minneapolis, Minnesota 55455, USA.
Cryobiology (Impact Factor: 1.64). 04/1999; 38(2):140-53. DOI: 10.1006/cryo.1999.2157
Source: PubMed

ABSTRACT The freezing responses of hematopoietic progenitor cells isolated from normal donors and from donors with mucopolysaccharidosis type I (MPS I) were determined using cryomicroscopy and analyzed using theoretical models for water transport and intracellular ice formation. The cells from donors with MPS I used in this investigation were cultured and transduced with a retroviral vector for the alpha-l-iduronidase (IDUA) enzyme in preclinical studies for human gene therapy. The water transport and intracellular ice formation (IIF) characteristics were determined at different time points in the culture and transduction process for hematopoietic progenitor cells expressing CD34 antigen from donors with MPS I and from normal donors. There were statistically significant changes in water transport, osmotically inactive cell volume fraction, and permeability between cells from different sources (normal donors vs donors with MPSI) and different culture conditions (freshly isolated vs cultured and transduced). Specifically, Lpg and Ea increased after ex vivo culture of the cells and the changes in permeability parameters were observed after as little as 3 days in culture. Similarly, the IIF characteristics of hematopoietic progenitor cells can also be influenced by the culture and transduction process. The IIF characteristics of freshly isolated cells from donors with MPS I were statistically distinct from those of cultured and transduced cells from the same donor. The ability to cryopreserve cells which are cultured ex vivo for therapeutic purposes will require an understanding of the biophysical changes resulting from the culture conditions and the manner in which these changes influence viability.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract FTIR and cryomicroscopy have been used to study mouse embryonic fibroblast cells (3T3) during freezing in the absence and presence of DMSO and glycerol. The results show that cell volume changes as observed by cryomicroscopy typically end at temperatures above -15°C, whereas membrane phase changes may continue until temperatures as low as -30°C. This implies that cellular dehydration precedes dehydration of the bound water surrounding the phospholipid head groups. Both DMSO and glycerol increase the membrane hydraulic permeability at subzero temperature and reduce the activation energy for water transport. Cryoprotective agents facilitate dehydration to continue at low subzero temperatures thereby decreasing the incidence of intracellular ice formation. The increased subzero membrane hydraulic permeability likely plays an important role in the cryoprotective action of DMSO and glycerol. In the presence of DMSO water permeability was found to be greater compared to that in the presence of glycerol. Two temperature regimes were identified in an Arrhenius plot of the membrane hydraulic permeability. The activation energy for water transport at temperature ranging from 0 to -10°C was found to be greater than that below -10°C. The non-linear Arrhenius behavior of Lp has been implemented in the water transport model to simulate cell volume changes during freezing. At a cooling rate of 1°C min(-1), ∼5% of the initial osmotically active water volume is trapped inside the cells at -30°C.
    Molecular Membrane Biology 07/2012; 29(6):197-206. · 1.73 Impact Factor
  • Source
    Uspekhi Fizicheskih Nauk 01/2008; 178(3).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Remote sensing, noninvasive and direct analysis of samples cannot be performed in any analytical situation and, unfortunately, in many cases the greening of a procedure involves only the reduction of the side effects of sample treatments. The evolution of alternative green sample preparation tools pursues reduction of the amount of sample, reduction or elimination of organic solvents, simultaneous multiclass compound extraction and potential for automation and/or high-throughput determination.In this chapter, the state-of-the-art of green alternatives for sample treatment have been discussed, based on the classification of the different alternatives according to the physical state of the samples, solids or liquids and also considering the generation of a gas or vapor phase directly from the samples. Many different objectives like analyte isolation from the matrix, analyte enrichment and/or sample clean-up and selective isolation of target analytes will be considered here.
    Comprehensive Analytical Chemistry 01/2011; 57:87-120.