Article

Induction of mucosal immunity by inactivated poliovirus vaccine is dependent on previous mucosal contact with live virus.

Research Laboratory for Infectious Diseases, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
The Journal of Immunology (Impact Factor: 5.36). 05/1999; 162(8):5011-8.
Source: PubMed

ABSTRACT The inactivated poliovirus vaccine (IPV) is used for protection against poliomyelitis in The Netherlands. It is not clear, however, whether IPV vaccination can lead to priming of the mucosal immune system and the induction of IgA. It has been demonstrated that IPV vaccination is able to induce strong memory IgA responses in the serum of persons who have been naturally exposed to wild-type poliovirus. This has led to the hypothesis that IPV vaccination is able to induce poliovirus-specific IgA at mucosal sites in persons who have been previously primed with live poliovirus at mucosal sites. To test this hypothesis, the kinetics of the IgA response in serum and saliva after IPV vaccination were examined in persons previously vaccinated with oral poliovirus vaccine (OPV) or IPV. ELISA and enzyme-linked immunospot assays were used for the detection of poliovirus-specific IgA responses. In addition, B cell populations were separated on the basis of the expression of mucosal (alpha4beta7 integrin) and peripheral homing receptors (L-selectin). Parenteral IPV vaccination was able to boost systemic and mucosal IgA responses in previously OPV-vaccinated persons only. None of the previously vaccinated IPV recipients responded with the production of IgA in saliva. In agreement with this finding, a large percentage of the poliovirus-specific IgA-producing lymphocytes detected in previous OPV recipients expressed the alpha4beta7 integrin. It is concluded that IPV vaccination alone is insufficient to induce a mucosal IgA response against poliovirus. In mucosally (OPV-) primed individuals, however, booster vaccination with IPV leads to a strong mucosal IgA response.

Download full-text

Full-text

Available from: Marion Koopmans, Jul 02, 2015
0 Followers
 · 
51 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 is the most prevalent EHEC serotype that has been recovered from patients with haemolytic uremic syndrome (HUS) worldwide. Vaccination of cattle, the main reservoir of EHEC O157:H7, could be a logical strategy to fight infection in humans. This study evaluated a vaccine based on the carboxyl-terminal fragment of 280 amino acids of γ-intimin (γ-intimin C₂₈₀) and EspB, two key colonization factors of E. coli O157:H7. Intramuscular immunization elicited significantly high levels of serum IgG antibodies against both proteins. Antigen-specific IgA and IgG were also induced in saliva, but only the IgA response was significant. Following experimental challenge with E. coli O157:H7, a significant reduction in bacterial shedding was observed in vaccinated calves, compared to control group. These promising results suggest that systemic immunization of cattle with intimin and EspB could be a feasible strategy to reduce EHEC O157:H7 faecal shedding in cattle.
    Vaccine 05/2011; 29(23):3962-8. DOI:10.1016/j.vaccine.2011.03.079
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Humoral and mucosal (secretory antibody)immune response to FMDV type Asia 1 in cattle was analyzed after vaccination and infection using virus neutralizing test (VNT). Vaccination (1/16th the usual dose) failed to protect cattle from generalized clinical disease following experimental FMDV Asia 1 infection. Our results showed that infection induced higher and prolonged serum antibody titres indicating antigen mass is important for optimal immune response. Experimental FMDV infection induced significant secretory antibody (mucosal) response in cattle. Though, there was no difference in the serum antibody response between the cattle that developed generalized infection (unprotected) and those with only localized infection (protected), secretory antibody response differed, wherein the unprotected cattle had higher secretory response than protected cattle. Thus, FMDV Asia 1 infection stimulates a similar serum antibody response and a unique secretory antibody response among the infected cattle.
    Veterinary Research Communications 03/2009; 33(3). DOI:10.1007/s11259-009-9208-5
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Humoral and mucosal (secretory antibody)immune response to FMDV type Asia 1 in cattle was analyzed after vaccination and infection using virus neutralizing test (VNT). Vaccination (1/16th the usual dose) failed to protect cattle from generalized clinical disease following experimental FMDV Asia 1 infection. Our results showed that infection induced higher and prolonged serum antibody titres indicating antigen mass is important for optimal immune response. Experimental FMDV infection induced significant secretory antibody (mucosal) response in cattle. Though, there was no difference in the serum antibody response between the cattle that developed generalized infection (unprotected) and those with only localized infection (protected), secretory antibody response differed, wherein the unprotected cattle had higher secretory response than protected cattle. Thus, FMDV Asia 1 infection stimulates a similar serum antibody response and a unique secretory antibody response among the infected cattle.
    Veterinary Research Communications 02/2009; 33(2):103-9. DOI:10.1007/s11259-008-9076-4