Article

Kainate-elicited seizures induce mRNA encoding a CaMK-related peptide: a putative modulator of kinase activity in rat hippocampus.

Division of Medical Pharmacology, Leiden/Amsterdam Center for Drug Research, Leiden University, The Netherlands.
Journal of Neurobiology (Impact Factor: 3.05). 05/1999; 39(1):41-50. DOI: 10.1002/(SICI)1097-4695(199904)39:13.0.CO;2-X
Source: PubMed

ABSTRACT By means of differential display techniques, we have previously identified an mRNA transcript whose expression is highly induced in the rat hippocampus by kainate-elicited seizures. Here, we report the cloning of a corresponding cDNA encoding a 55-amino-acid, serine-rich peptide which contains four predicted phosphorylation sites. The peptide was designated CaMK-related peptide (CARP) as it shares significant amino acid sequence identity with part of a novel putative calcium/calmodulin-dependent kinase (CaMK-VI) that was also cloned in this study. It appears that CARP and CaMK-VI are derived from the same gene through differential splicing. Intriguingly, CARP also exhibits 64% amino acid sequence identity with the C-terminal part of human doublecortin, encoded by a recently identified gene which is mutated in patients with X-linked lissencephaly and the double-cortex syndrome. In addition, the structure of CARP resembles the autoinhibitory, serine-rich N-terminal domain of CaMK-IV, suggesting a possible modulatory role of CARP with respect to CaMK activity. Northern blot analysis and in situ hybridization experiments showed that CARP mRNA is specifically induced by kainate-elicited seizures in the dentate gyrus and in the pyramidal layers CA1 and CA2, but not in CA3. In contrast, kainate-induced seizures did not change the level of expression of the CaMK-VI gene. We propose that CARP induction leads to the modulation of kinase activity in specific subregions of the rat hippocampus, providing a negative feedback mechanism for seizure-induced kinases.

0 Bookmarks
 · 
75 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have characterized the expression of doublecortin-like (DCL), a microtubule-associated protein involved in embryonic neurogenesis that is highly homologous to doublecortin (DCX), in the adult mouse brain. To this end, we developed a DCL-specific antibody and used this to compare DCL expression with DCX. In the neurogenic regions of the adult brain like the subventricular zone (SVZ), the rostral migratory stream (RMS), the olfactory bulb (OB), and the hippocampus, DCL colocalizes with DCX in immature neuronal cell populations. In contrast to DCX, we also found high DCL expression in three other brain regions with suspected neurogenesis or neuronal plasticity. First, the radial glia-like, hypothalamic tanycytes show high DCL expression that partly colocalizes with the neural stem cell marker vimentin. Second, DCL expression is found in cells of the suprachiasmatic nucleus (SCN), which lacks expression of the adult neuron marker NeuN. Third, a novel region exhibiting DCL expression is part of the olfactory tubercle where DCL is found in the neuropil of the islands of Calleja (ICj). Our findings define DCL as a novel marker for specific aspects of adult neurogenesis, which partly overlap with DCX. In addition, we propose unique roles for DCL in adult neurogenesis and we suggest high levels of neuronal plasticity in tanycytes, SCN, and ICj.
    The Journal of Comparative Neurology 05/2012; 520(13):2805-23. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the expansion of knowledge about neuroblastoma (NB) in recent years, the therapeutic outcome for children with a high-risk NB has not significantly improved. Therefore, more effective therapies are needed. This might be achieved by aiming future efforts at recently proposed but not yet developed targets for NB therapy. In this review, we discuss the recently proposed molecular targets that are in clinical trials and, in particular, those that are not yet explored in the clinic. We focus on the selection of these molecular targets for which promising in vitro and in vivo results have been obtained by silencing/inhibiting them. In addition, these selected targets are involved at least in one of the NB tumorigenic processes: proliferation, anti-apoptosis, angiogenesis and/or metastasis. In particular, we will review a recently proposed target, the microtubule-associated proteins (MAPs) encoded by doublecortin-like kinase gene (DCLK1). DCLK1-derived MAPs are crucial for proliferation and survival of neuroblasts and are highly expressed not only in NB but also in other tumours such as gliomas. Additionally, we will discuss neuropeptide Y, its Y2 receptor and cathepsin L as examples of targets to decrease angiogenesis and metastasis of NB. Furthermore, we will review the micro-RNAs that have been proposed as therapeutic targets for NB. Detailed investigation of these not yet developed targets as well as exploration of multi-target approaches might be the key to a more effective NB therapy, i.e. increasing specificity, reducing toxicity and avoiding long-term side effects.
    Endocrine Related Cancer 10/2011; 18(6):R213-31. · 5.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Doublecortin-like (DCL) is a microtubule-binding protein crucial for neuroblastoma (NB) cell proliferation. We have investigated whether the anti-proliferative effect of DCL knockdown is linked to reduced mitochondrial activity. We found a delay in tumor development after DCL knockdown in vivo in doxycycline-inducible NB tumor xenografts. To understand the mechanisms underlying this tumor growth retardation we performed a series of in vitro experiments in NB cell lines. DCL colocalizes with mitochondria, interacts with the mitochondrial outer membrane protein OMP25/ SYNJ2BP and DCL knockdown results in decreased expression of genes involved in oxidative phosphorylation. Moreover, DCL knockdown decreases cytochrome c oxidase activity and ATP synthesis. We identified the C-terminal Serine/Proline-rich domain and the second microtubule-binding area as crucial DCL domains for the regulation of cytochrome c oxidase activity and ATP synthesis. Furthermore, DCL knockdown causes a significant reduction in the proliferation rate of NB cells under an energetic challenge induced by low glucose availability. Together with our previous studies, our results corroborate DCL as a key player in NB tumor growth in which DCL controls not only mitotic spindle formation and the stabilization of the microtubule cytoskeleton, but also regulates mitochondrial activity and energy availability, which makes DCL a promising molecular target for NB therapy.
    PLoS ONE 01/2013; 8(9):e75752. · 3.53 Impact Factor

Full-text (2 Sources)

View
0 Downloads
Available from
Aug 20, 2014