Article

The phospholipase C inhibitor U73122 inhibits phorbol ester-induced platelet activation.

Departments of Pharmacology & Therapeutics and Oral Biology, University of Manitoba, Winnipeg, Manitoba, Canada.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.86). 06/1999; 289(2):721-8.
Source: PubMed

ABSTRACT Activation of phospholipase C (PLC) is a central component of the signal transduction process in numerous cells, including platelets. U73122 has been widely used as a selective PLC inhibitor. In the present study, the effects of U73122 on platelet function have been further examined. Platelets were stimulated with collagen (via PLC-gamma), the stable thromboxane mimetic U46619 (via PLC-beta), or phorbol myristate acetate (PMA) via protein kinase C (PKC). Consistent with inhibition of PLC, U73122 inhibited platelet aggregation and [3H]-serotonin release in response to collagen and U46619 in a concentration-dependent manner. Similarly, U73122 blocked collagen-induced release of thromboxane A2. U73122 also inhibited U46619-induced [32P]phosphatidic acid production and phosphorylation of the major PKC substrate, pleckstrin. U73122 had no effect on PMA-induced pleckstrin phosphorylation, [3H]-serotonin release, or intracellular vacuole formation. However, U73122 did inhibit PMA-induced platelet aggregation and fibrinogen binding. Overall, these results suggest that U73122, in addition to its inhibition of PLC, also affects PKC-independent events that interfere with platelet aggregation.

0 Bookmarks
 · 
159 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wnt signaling is known to be important for diverse embryonic and post-natal cellular events and be regulated by the proteins Dishevelled and Axin. Although Dishevelled is activated by Wnt and involved in signal transduction, it is not clear how Dishevelled-mediated signaling is turned off. We report that guanine nucleotide binding protein beta 2 (Gnb2; Gbeta2) bound to Axin and Gbeta2 inhibited Wnt mediated reporter activity. The inhibition involved reduction of the level of Dishevelled, and the Gbeta2gamma2 mediated reduction of Dishevelled was countered by increased expression of Axin. Consistent with these effects in HEK293T cells, injection of Gbeta2gamma2 into Xenopus embryos inhibited the formation of secondary axes induced either by XWnt8 or Dishevelled, but not by beta-catenin. The DEP domain of Dishevelled is necessary for both interaction with Gbeta2gamma2 and subsequent degradation of Dishevelled via the lysosomal pathway. Signaling induced by Gbeta2gamma2 is required because a mutant of Gbeta2, Gbeta2 (W332A) with lower signaling activity, had reduced ability to downregulate the level of Dishevelled. Activation of Wnt signaling by either of two methods, increased Frizzled signaling or transient transfection of Wnt, also led to increased degradation of Dishevelled and the induced Dishevelled loss is dependent on Gbeta1 and Gbeta2. Other studies with agents that interfere with PLC action and calcium signaling suggested that loss of Dishevelled is mediated through the following pathway: Wnt/Frizzled-->Gbetagamma-->PLC-->Ca(+2)/PKC signaling. Together the evidence suggests a novel negative feedback mechanism in which Gbeta2gamma2 inhibits Wnt signaling by degradation of Dishevelled.
    Experimental and Molecular Medicine 07/2009; 41(10):695-706. · 2.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inhibition of Ca(2+) mobilization by cyclic nucleotides is central to the mechanism whereby endothelial-derived prostacyclin and nitric oxide limit platelet activation in the intact circulation. However, we show that ∼ 50% of the Ca(2+) response after stimulation of glycoprotein VI (GPVI) by collagen, or of Toll-like 2/1 receptors by Pam(3)Cys-Ser-(Lys)(4) (Pam(3)CSK(4)), is resistant to prostacyclin. At low agonist concentrations, the prostacyclin-resistant Ca(2+) response was predominantly because of P2X1 receptors activated by ATP release via a phospholipase-C-coupled secretory pathway requiring both protein kinase C and cytosolic Ca(2+) elevation. At higher agonist concentrations, an additional pathway was observed because of intracellular Ca(2+) release that also depended on activation of phospholipase C and, for TLR 2/1, PI3-kinase. Secondary activation of P2X1-dependent Ca(2+) influx also persisted in the presence of nitric oxide, delivered from spermine NONOate, or increased ectonucleotidase levels (apyrase). Surprisingly, apyrase was more effective than prostacyclin and NO at limiting secondary P2X1 activation. Dilution of platelets reduced the average extracellular ATP level without affecting the percentage contribution of P2X1 receptors to collagen-evoked Ca(2+) responses, indicating a highly efficient activation mechanism by local ATP. In conclusion, platelets possess inhibitor-resistant Ca(2+) mobilization pathways, including P2X1 receptors, that may be particularly important during early thrombotic or immune-dependent platelet activation.
    Blood 01/2012; 119(15):3613-21. · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 1. The epithelial Na(+) channel (ENaC) is a major conductive pathway that transports Na(+) across the apical membrane of the distal nephron, the respiratory tract, the distal colon and the ducts of exocrine glands. The ENaC is regulated by hormonal and humoral factors, including extracellular nucleotides that are available from the epithelial cells themselves. 2. Extracellular nucleotides, via the P2Y2 receptors (P2Y2Rs) at the basolateral and apical membrane of the epithelia, trigger signalling systems that inhibit the activity of the ENaC and activate Ca(2+) -dependent Cl(-) secretion. 3. Recent data from our laboratory suggest that stimulation of the P2Y2Rs at the basolateral membrane inhibits ENaC activity by a signalling mechanism that involves G beta gamma subunits freed from a pertussis toxin (PTX)-sensitive G-protein and phospholipase C (PLC) beta 4. A similar signalling mechanism is also partially responsible for inhibition of the ENaC during activation of apical P2Y2Rs. 4. Stimulation of apical P2Y2Rs also activates an additional signalling mechanism that inhibits the ENaC and involves the activated Galpha subunit of a PTX-insensitive G-protein and activation of an unidentified PLC. The effect of this PTX-insensitive system requires the activity of the basolateral Na(+)/K(+)/2Cl(-) cotransporter.
    Clinical and Experimental Pharmacology and Physiology 07/2009; 36(10):1016-22. · 2.41 Impact Factor