Article

Apg7p/Cvt2p: A novel protein-activating enzyme essential for autophagy.

Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan.
Molecular Biology of the Cell (Impact Factor: 4.55). 06/1999; 10(5):1367-79. DOI: 10.1091/mbc.10.5.1367
Source: PubMed

ABSTRACT In the yeast Saccharomyces cerevisiae, the Apg12p-Apg5p conjugating system is essential for autophagy. Apg7p is required for the conjugation reaction, because Apg12p is unable to form a conjugate with Apg5p in the apg7/cvt2 mutant. Apg7p shows a significant similarity to a ubiquitin-activating enzyme, Uba1p. In this article, we investigated the function of Apg7p as an Apg12p-activating enzyme. Hemagglutinin-tagged Apg12p was coimmunoprecipitated with c-myc-tagged Apg7p. A two-hybrid experiment confirmed the interaction. The coimmunoprecipitation was sensitive to a thiol-reducing reagent. Furthermore, a thioester conjugate of Apg7p was detected in a lysate of cells overexpressing both Apg7p and Apg12p. These results indicated that Apg12p interacts with Apg7p via a thioester bond. Mutational analyses of Apg7p suggested that Cys507 of Apg7p is an active site cysteine and that both the ATP-binding domain and the cysteine residue are essential for the conjugation of Apg7p with Apg12p to form the Apg12p-Apg5p conjugate. Cells expressing mutant Apg7ps, Apg7pG333A, or Apg7pC507A showed defects in autophagy and cytoplasm-to-vacuole targeting of aminopeptidase I. These results indicated that Apg7p functions as a novel protein-activating enzyme necessary for Apg12p-Apg5p conjugation.

0 Followers
 · 
71 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a bulk degradation pathway that removes cytosolic materials to maintain cellular homeostasis. The autophagy-related gene 13 (Atg13) and microtubule associate protein 1 light chain 3 (LC3) proteins are required for autophagosome formation. We demonstrate that each of the human LC3 isoforms (LC3A, LC3B, and LC3C) interacts with Atg13 via the LC3 interacting region (LIR) of Atg13. Using X-ray crystallography, we solved the macromolecular structures of LC3A and LC3C, along with the complex structures of the LC3 isoforms with the Atg13 LIR. Together, our structural and binding analyses reveal that the side-chain of Lys49 of LC3 acts as a gatekeeper to regulate binding of the LIR. We verified this observation by mutation of Lys49 in LC3A, which significantly reduces LC3A positive puncta formation in cultured cells. Our results suggest that specific affinity of the LC3 isoforms to the Atg13 LIR is required for proper autophagosome formation.
    Structure 11/2013; 22(1). DOI:10.1016/j.str.2013.09.023 · 6.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy plays a crucial role in a wide array of physiological processes. To uncover the complex regulatory networks and mechanisms underlying basal autophagy, we performed a quantitative proteomics analysis of autophagy-deficient mouse embryonic fibroblast cells (MEFs) using iTRAQ labeling coupled with on-line 2D LC/MS/MS. We quantified a total of 1,234 proteins and identified 114 proteins that were significantly altered (90% confidence interval), including 48 up-regulated proteins and 66 down-regulated proteins. We determined that F-actin was disassembled in autophagy-deficient Atg7(-/-) MEFs. Treatment of the WT MEFs with cytochalasin D (CD), which induces F-actin depolymerization, significantly induced autophagosome formation. However, treatment with cytochalasin D also increased the protein level of p62 under starvation conditions, suggesting that depolymerization of F-actin impaired autophagosome maturation and that the intact F-actin network is required for basal and starvation-induced autophagy. Our results demonstrate a close relationship between F-actin and autophagy and provide the basis for further investigation of their interactions.
    Biochemical and Biophysical Research Communications 07/2013; 437(3). DOI:10.1016/j.bbrc.2013.06.111 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is well established as a starvation-induced process in yeast and mammalian cells and tissues. To elucidate the cellular mechanisms induced by starvation in fish, we characterized the induction of autophagy in cultured zebrafish cells under starvation conditions. As an autophagic marker protein, the microtubule-associated protein 1-light chain 3B protein (MAP1-LC3B) was cloned from the fish cells, and its expression and localization were characterized. In zebrafish embryonic (ZE) cells, posttranslational modifications produced two distinct forms of MAP1-LC3B, i.e., a cytosolic form and a membrane-bound form (types I and II, respectively). Immunofluorescence microscopy revealed fluorescently labeled autophagosomes in cells stably transfected with a green fluorescent protein (GFP)–MAP1-LC3B fusion protein and showed that this protein accumulated in punctate dots in a time-dependent manner in response to amino acid starvation. Starvation also induced the degradation of long-lived proteins. Treatment with 3-methyladenine and wortmannin, two class-III inhibitors of phosphoinositide 3-kinase (PI3K), repressed autophagy under starvation conditions, indicating that the PI3K class-III pathway regulates starvation-induced autophagy in fish.
    Marine Biotechnology 01/2012; 14(4):491-501. DOI:10.1007/s10126-012-9432-9 · 3.15 Impact Factor