Article

Role of the Ets transcription factors in the regulation of the vascular-specific Tie2 gene.

New England Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center, Boston, MA, USA.
Circulation Research (Impact Factor: 11.09). 06/1999; 84(10):1177-85. DOI: 10.1161/01.RES.84.10.1177
Source: PubMed

ABSTRACT The Tie2 gene encodes a vascular endothelium-specific receptor tyrosine kinase that is required for normal vascular development and is also upregulated during angiogenesis. The regulatory regions of the Tie2 gene that are required for endothelium-specific gene expression in vivo have been identified. However, the transcription factors required for Tie2 gene expression remain largely unknown. We have identified highly conserved binding sites for Ets transcription factors in the Tie2 promoter. Mutations in 2 particular binding sites lead to a 50% reduction in the endothelium-specific activity of the promoter. We have compared the ability of several members of the Ets family to transactivate the Tie2 promoter. Our results demonstrate that 1 of 3 distinct isoforms of the novel Ets transcription factor NERF, NERF2, is expressed in endothelial cells and can strongly transactivate the regulatory regions of the Tie2 gene in comparison to other Ets factors, which have little or no effect. NERF2 can bind to the Tie2 promoter Ets sites in electrophoretic mobility shift assays. These studies support a role for Ets factors in the regulation of vascular-specific gene expression and suggest that the novel Ets factor NERF2 may be a critical transcription factor in specifying the expression of the Tie2 gene in vascular endothelial cells.

2 Followers
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factors that regulate endothelial cell development have been a focus of active research for several years, and many players in the endothelial transcriptional program have been identified. This review discusses the function of several major regulators of endothelial transcription, including members of the Sox, Ets, Forkhead, GATA, and Kruppel-like families. This review also highlights recent developments aimed at unraveling the combinatorial mechanisms and transcription factor interactions that regulate endothelial cell specification and differentiation during vasculogenesis and angiogenesis.
    Developmental Cell 03/2009; 16(2):180-95. DOI:10.1016/j.devcel.2009.01.014 · 10.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular development begins when mesodermal cells differentiate into endothelial cells, which then form primitive vessels. It has been hypothesized that endothelial-specific gene expression may be regulated combinatorially, but the transcriptional mechanisms governing specificity in vascular gene expression remain incompletely understood. Here, we identify a 44 bp transcriptional enhancer that is sufficient to direct expression specifically and exclusively to the developing vascular endothelium. This enhancer is regulated by a composite cis-acting element, the FOX:ETS motif, which is bound and synergistically activated by Forkhead and Ets transcription factors. We demonstrate that coexpression of the Forkhead protein FoxC2 and the Ets protein Etv2 induces ectopic expression of vascular genes in Xenopus embryos, and that combinatorial knockdown of the orthologous genes in zebrafish embryos disrupts vascular development. Finally, we show that FOX:ETS motifs are present in many known endothelial-specific enhancers and that this motif is an efficient predictor of endothelial enhancers in the human genome.
    Cell 01/2009; 135(6):1053-64. DOI:10.1016/j.cell.2008.10.049 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Formation of a functional vasculature during mammalian development is essential for embryonic survival. In addition, imbalance in blood vessel growth contributes to the pathogenesis of numerous disorders. Most of our understanding of vascular development and blood vessel growth comes from investigating the Vegf signaling pathway as well as the recent observation that molecules involved in axon guidance also regulate vascular patterning. In order to take an unbiased, yet focused, approach to identify novel genes regulating vascular development, we performed a three-step ENU mutagenesis screen in zebrafish. We first screened live embryos visually, evaluating blood flow in the main trunk vessels, which form by vasculogenesis, and the intersomitic vessels, which form by angiogenesis. Embryos that displayed reduced or absent circulation were fixed and stained for endogenous alkaline phosphatase activity to reveal blood vessel morphology. All putative mutants were then crossed into the Tg(flk1:EGFP)(s843) transgenic background to facilitate detailed examination of endothelial cells in live and fixed embryos. We screened 4015 genomes and identified 30 mutations affecting various aspects of vascular development. Specifically, we identified 3 genes (or loci) that regulate the specification and/or differentiation of endothelial cells, 8 genes that regulate vascular tube and lumen formation, 8 genes that regulate vascular patterning, and 11 genes that regulate vascular remodeling, integrity and maintenance. Only 4 of these genes had previously been associated with vascular development in zebrafish illustrating the value of this focused screen. The analysis of the newly defined loci should lead to a greater understanding of vascular development and possibly provide new drug targets to treat the numerous pathologies associated with dysregulated blood vessel growth.
    Developmental Biology 08/2007; 307(1):29-42. DOI:10.1016/j.ydbio.2007.03.526 · 3.64 Impact Factor

Preview

Download
1 Download