Neurofibrillary tangles in nondemented elderly subjects and mild Alzheimer disease.

Department of Psychiatry, The Mount Sinai School of Medicine, New York, NY, USA.
JAMA Neurology (Impact Factor: 7.01). 06/1999; 56(6):713-8. DOI: 10.1001/archneur.56.6.713
Source: PubMed

ABSTRACT The relationship between neuropathological lesions and mild, "preclinical," cognitive impairments of Alzheimer disease is poorly understood. Identification of the lesions that are most closely associated with the earliest symptoms of Alzheimer disease is crucial to the understanding of the disease process and the development of treatment strategies to affect its progression.
We examined the extent of neurofibrillary tangles (NFTs) in 4 neocortical regions, the hippocampus, the entorhinal cortex, and the amygdala in 65 elderly subjects with no dementia, questionable dementia, mild dementia, or moderate dementia as assessed using the Clinical Dementia Rating Scale (CDR).
Postmortem study of nursing home residents.
Neurofibrillary tangles were present in the entorhinal cortex and the hippocampus of all subjects, including those without cognitive deficits. Neocortical NFTs were mostly absent in the nondemented (CDR score, 0.0) subjects. The density of NFTs in the questionably demented (CDR score, 0.5) subjects was not significantly increased (P>.20) relative to the nondemented group in any of the brain regions studied. Significant increases (P<.04) in NFT density become apparent first in the amygdala and the temporal cortex in subjects rated to be mildly impaired (CDR score, 1.0). By the time that cognitive impairments were judged to be moderately severe (CDR score, 2.0), all regions of the brain examined, except for the occipital cortex, were significantly (P<.05) involved.
Some NFTs are present in the entorhinal cortex and hippocampus of most elderly individuals irrespective of their cognitive status, but the density of NFTs increases as a function of dementia severity.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent phase II and III studies with intravenous immunoglobulin (IVIG) in patients with Alzheimer¿s disease (AD) did not find evidence for the slowing of AD progression compared to placebo-treated patients, in contrast to encouraging results in pilot studies. An additional phase III trial is ongoing. If negative results are found, then further AD studies with IVIG are unlikely unless a manufacturer opts for a trial with high-dose IVIG, which would increase its anti-inflammatory effects but also the risk for adverse events. An alternative approach could be an AD-specific IVIG, supplementing IVIG with higher concentrations of selected antibodies purified from it or produced via recombinant polyclonal antibody technology. These antibodies could include those to amyloid-beta (Aß, tau protein, inflammatory cytokines, complement activation proteins, and the receptor for advanced glycation end products. IgG fragment crystallizable (Fc) fragments containing terminal sialic acid could be added to increase anti-inflammatory effects. While this product might be more effective in slowing AD clinical progression than current IVIG, there are difficulties with this approach. Preclinical studies would be required to determine which of the antibodies of interest for supplementing current IVIG (for example, antibodies to phosphorylated or oligomeric tau) are actually present (and, therefore, available for purification) in IVIG, and the effects of the product in mouse models of AD. An Investigational New Drug application for an AD-specific IVIG would require United States Food and Drug Administration approval. If the drug would be found to benefit AD patients, meeting the increased demand for IVIG would be challenging.
    Journal of Neuroinflammation 12/2014; 11(1):198. DOI:10.1186/PREACCEPT-1067356402138341 · 4.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal signal transduction events can impact upon the cytoskeleton, affecting the actin and microtubule networks with direct relevance to Alzheimer's disease (AD). Cytoskeletal anomalies, in turn, promote atypical neuronal responses, with consequences for cellular organization and function. Neuronal cytoskeletal modifications in AD include neurofibrillary tangles, which result from aggregates of hyperphosphorylated tau protein. The latter is a microtubule (MT)-binding protein, whose abnormal phosphorylation leads to MT instability and consequently provokes irregularities in the neuronal trafficking pathways. Early stages of AD are also characterized by synaptic dysfunction and loss of dendritic spines, which correlate with cognitive deficit and impaired brain function. Actin dynamics has a prominent role in maintaining spine plasticity and integrity, thus providing the basis for memory and learning processes. Hence, factors that disrupt both actin and MT network dynamics will compromise neuronal function and survival. The peptide Aβ is the major component of senile plaques and has been described as a pivotal mediator of neuronal dystrophy and synaptic loss in AD. Here, we review Aβ-mediated effects on both MT and actin networks and focus on the relevance of the elicited cytoskeletal signaling events targeted in AD pathology.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microglia and astrocytes contribute to Alzheimer's disease (AD) etiology and may mediate early neuroinflammatory responses. Despite their possible role in disease progression and despite the fact that they can respond to amyloid deposition in model systems, little is known about whether astro-or microglia can undergo proliferation in AD and whether this is related to the clinical symptoms or to local neuropathological changes. Previously, proliferation was found to be increased in glia-rich regions of the presenile hippocampus. Since their phenotype was unknown, we here used two novel triple-immunohistochemical protocols to study proliferation in astro-or microglia in relation to amyloid pathology. We selected different age-matched cohorts to study whether proliferative changes relate to clinical severity or to neuropathological changes. Proliferating cells were found across the hippocampus but never in mature neurons or astrocytes. Almost all proliferating cells were colabeled with Iba1+, indicating that particularly microglia contribute to proliferation in AD. Proliferating Iba1+ cells was specifically seen within the borders of amyloid plaques, indicative of an active involvement in, or response to, plaque accumulation. Thus, consistent with animal studies, proliferation in the AD hippocampus is due to microglia, occurs in close proximity of plaque pathology, and may contribute to the neuroinflammation common in AD.
    Neural Plasticity 08/2014; 2014. DOI:10.1155/2014/693851 · 3.60 Impact Factor