How Many Subjects Constitute a Study?

The Wellcome Department of Cognitive Neurology, Institute of Neurology, Queen Square, London, WC1N 3BG, United Kingdom.
NeuroImage (Impact Factor: 6.36). 08/1999; 10(1):1-5. DOI: 10.1006/nimg.1999.0439
Source: PubMed


In fMRI there are two classes of inference: one aims to make a comment about the "typical" characteristics of a population, and the other about "average" characteristics. The first pertains to studies of normal subjects that try to identify some qualitative aspect of normal functional anatomy. The second class necessarily applies to clinical neuroscience studies that want to make an inference about quantitative differences of a regionally specific nature. The first class of inferences is adequately serviced by conjunction analyses and fixed-effects models with relatively small numbers of subjects. The second requires random-effect analyses and larger cohorts.

10 Reads
  • Source
    • "fMRI data were analysed using a two-stage random-effects procedure (Friston et al. 1999). The first stage identified subject-specific task-related activations relevant to pattern trials (experimental condition) over the entire session as well as linear increases and decreases in activity over the five blocks of pattern trials. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Most cognitive domains show only minimal improvement following typical or atypical antipsychotic treatments in schizophrenia, and some may even worsen. One domain that may worsen is procedural learning, an implicit memory function relying mainly on the integrity of the fronto-striatal system. We investigated whether switching to atypical antipsychotics would improve procedural learning and task-related neural activation in patients on typical antipsychotics. Furthermore, we explored the differential effects of the atypical antipsychotics risperidone and olanzapine. Thirty schizophrenia patients underwent functional magnetic resonance imaging during a 5-min procedural (sequence) learning task on two occasions: at baseline and 7-8 weeks later. Of 30 patients, 10 remained on typical antipsychotics, and 20 were switched randomly in equal numbers to receive either olanzapine (10-20 mg) or risperidone (4-8 mg) for 7-8 weeks. At baseline, patients (all on typical antipsychotics) showed no procedural learning. At follow-up, patients who remained on typical antipsychotics continued to show a lack of procedural learning, whereas those switched to atypical antipsychotics displayed significant procedural learning (p = 0.001) and increased activation in the superior-middle frontal gyrus, anterior cingulate and striatum (cluster-corrected p < 0.05). These neural effects were present as a linear increase over five successive 30-s blocks of sequenced trials. A switch to either risperidone or olanzapine resulted in comparable performance but with both overlapping and distinct task-related activations. Atypical antipsychotics restore procedural learning deficits and associated neural activity in schizophrenia. Furthermore, different atypical antipsychotics produce idiosyncratic task-related neural activations, and this specificity may contribute to their differential long-term clinical profiles.
    Psychopharmacology 05/2015; 232(17). DOI:10.1007/s00213-015-3959-1 · 3.88 Impact Factor
  • Source
    • ") was performed in the following manner: for each seed, the time course was used as an individual predictor in a separate group analysis using a General Linear Model (GLM) in a hierarchical random effects (RFX) analysis (Friston et al., 1999 "
    [Show abstract] [Hide abstract]
    ABSTRACT: Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
    Brain 04/2015; 138(6). DOI:10.1093/brain/awv083 · 9.20 Impact Factor
  • Source
    • "Even though the number of 19 participants in each group approaches the recommended sample size for fMRI studies (99), a larger sample size would have increased the power of the statistical analyses. Furthermore, the incorporation of autonomic measures such as heart-rate would be useful to confirm the distressing quality of the trauma pictures in ASD patients. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional imaging studies of patients with post-traumatic stress disorder showed wide-spread activation of midline cortical areas during symptom provocation, i.e., exposure to trauma-related cues. The present study aimed at investigating neural activation during exposure to trauma-related pictures in patients with acute stress disorder (ASD) shortly after the traumatic event. Nineteen ASD patients and 19 healthy control participants were presented with individualized pictures of the traumatic event and emotionally neutral control pictures during the acquisition of whole-brain data with a 3-T fMRI scanner. Compared to the control group and to control pictures, ASD patients showed significant activation in midline cortical areas in response to trauma-related pictures including precuneus, cuneus, postcentral gyrus, and pre-supplementary motor area. The results suggest that the trauma-related pictures evoke emotionally salient self-referential processing in ASD patients.
    Frontiers in Psychiatry 05/2014; 5:49. DOI:10.3389/fpsyt.2014.00049
Show more