Pain perception: is there a role for primary somatosensory cortex?

McGill University and Université de Montréal, Montreal, Quebec, Canada H3A 1A1.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 08/1999; 96(14):7705-9. DOI: 10.1073/pnas.96.14.7705
Source: PubMed

ABSTRACT Anatomical, physiological, and lesion data implicate multiple cortical regions in the complex experience of pain. These regions include primary and secondary somatosensory cortices, anterior cingulate cortex, insular cortex, and regions of the frontal cortex. Nevertheless, the role of different cortical areas in pain processing is controversial, particularly that of primary somatosensory cortex (S1). Human brain-imaging studies do not consistently reveal pain-related activation of S1, and older studies of cortical lesions and cortical stimulation in humans did not uncover a clear role of S1 in the pain experience. Whereas studies from a number of laboratories show that S1 is activated during the presentation of noxious stimuli as well as in association with some pathological pain states, others do not report such activation. Several factors may contribute to the different results among studies. First, we have evidence demonstrating that S1 activation is highly modulated by cognitive factors that alter pain perception, including attention and previous experience. Second, the precise somatotopic organization of S1 may lead to small focal activations, which are degraded by sulcal anatomical variability when averaging data across subjects. Third, the probable mixed excitatory and inhibitory effects of nociceptive input to S1 could be disparately represented in different experimental paradigms. Finally, statistical considerations are important in interpreting negative findings in S1. We conclude that, when these factors are taken into account, the bulk of the evidence now strongly supports a prominent and highly modulated role for S1 cortex in the sensory aspects of pain, including localization and discrimination of pain intensity.


Available from: Jen-I Chen, Oct 23, 2014
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: The treatment of Failed Back Surgery Syndrome (FBSS) remains a challenge for pain medicine due to the complexity in the interactions between [1] a residual mechanical pain after surgery and, [2] a progressive transition into chronic pain involving central nervous system plasticity and molecular reorganization. The aim of this paper is to provide a fundamental overview of the pain pathway supporting the nociceptive component of the back pain. Literature searches included an exhaustive review of 643 references and 74 book chapters updated by searching the major electronic databases from 1930 to August 2013. Pain input is gathered by the peripheral fibre from the innervated tissue's environment and relayed by two contiguous central axons to the brain, via the spinal cord. At this level, it is possible to characterize physical pain and emotional pain. These are supported by two different pathways, encoding two dimensions of pain perception: In Neo-spino-thalamic pathway, the wide dynamic range neuron system is able to provide the information needed for mapping the "sensory-discriminative" dimension of pain. The second projection system (Paleo-spino-thalamic pathway) also involves the ventromedial thalamus but projects to the amygdala, the insula and the anterior cingulate cortex. These areas are associated with emotionality and affect. The mechanical component of FBSS cannot be understood unless the functioning of the pain system is known. But ultimately, the highly variable nature of back pain expression among individuals would require a careful pathophysiological dissection of the potential generators of back pain to guide pain management strategies. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
    Neurochirurgie 11/2014; 61. DOI:10.1016/j.neuchi.2014.09.001 · 0.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The perception of unpleasant stimuli enhances whereas the perception of pleasant stimuli decreases pain perception. In contrast, the effects of pain on the processing of emotional stimuli are much less known. Especially given the recent interest in facial expressions of pain as a special category of emotional stimuli, a main topic in this research line is the mutual influence of pain and facial expression processing. Therefore, in this mini-review we selectively summarize research on the effects of emotional stimuli on pain, but more extensively turn to the opposite direction namely how pain influences concurrent processing of affective stimuli such as facial expressions. Based on the motivational priming theory one may hypothesize that the perception of pain enhances the processing of unpleasant stimuli and decreases the processing of pleasant stimuli. This review reveals that the literature is only partly consistent with this assumption: pain reduces the processing of pleasant pictures and happy facial expressions, but does not - or only partly - affect processing of unpleasant pictures. However, it was demonstrated that pain selectively enhances the processing of facial expressions if these are pain-related (i.e., facial expressions of pain). Extending a mere affective modulation theory, the latter results suggest pain-specific effects which may be explained by the perception-action model of empathy. Together, these results underscore the important mutual influence of pain and emotional face processing.
    Frontiers in Psychology 10/2014; 5:1160. DOI:10.3389/fpsyg.2014.01160 · 2.80 Impact Factor