Article

Neutrophil-derived proteins: selling cytokines by the pound.

Department of Pathology, Faculty of Medicine, University of Verona, Italy.
Advances in Immunology (Impact Factor: 7.26). 02/1999; 73:369-509. DOI: 10.1016/S0065-2776(08)60791-9
Source: PubMed
3 Bookmarks
 · 
423 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polymorphonuclear neutrophils, besides their involvement in primary defense against infections - mainly through phagocytosis, generation of toxic molecules, release of enzymes, and formation of extracellular traps - are also becoming increasingly important for their contribution to the fine regulation in development of inflammatory and immune responses. These latter functions of neutrophils occur, in part, via their de novo production and release of a large variety of cytokines, including chemotactic cytokines (chemokines). Accordingly, the improvement in technologies for molecular and functional cell analysis, along with concomitant advances in cell purification techniques, have allowed the identification of a continuously growing list of neutrophil-derived cytokines, as well as the characterization of their biological implications in vitro and/or in vivo. This short review summarizes crucial concepts regarding the modalities of expression, release, and regulation of neutrophil-derived cytokines. It also highlights examples illustrating the potential implications of neutrophil-derived cytokines according to recent observations made in humans and/or in experimental animal models.
    Frontiers in Immunology 01/2014; 5:508.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As part of the Immunological Genome Project (ImmGen), gene expression was determined in unstimulated (circulating) mouse neutrophils and three populations of neutrophils activated in vivo, with comparison among these populations and to other leukocytes. Activation conditions included serum-transfer arthritis (mediated by immune complexes), thioglycollate-induced peritonitis, and uric acid-induced peritonitis. Neutrophils expressed fewer genes than any other leukocyte population studied in ImmGen, and down-regulation of genes related to translation was particularly striking. However, genes with expression relatively specific to neutrophils were also identified, particularly three genes of unknown function: Stfa2l1, Mrgpr2a and Mrgpr2b. Comparison of genes up-regulated in activated neutrophils led to several novel findings: increased expression of genes related to synthesis and use of glutathione and of genes related to uptake and metabolism of modified lipoproteins, particularly in neutrophils elicited by thioglycollate; increased expression of genes for transcription factors in the Nr4a family, only in neutrophils elicited by serum-transfer arthritis; and increased expression of genes important in synthesis of prostaglandins and response to leukotrienes, particularly in neutrophils elicited by uric acid. Up-regulation of genes related to apoptosis, response to microbial products, NFkB family members and their regulators, and MHC class II expression was also seen, in agreement with previous studies. A regulatory model developed from the ImmGen data was used to infer regulatory genes involved in the changes in gene expression during neutrophil activation. Among 64, mostly novel, regulatory genes predicted to influence these changes in gene expression, Irf5 was shown to be important for optimal secretion of IL-10, IP-10, MIP-1α, MIP-1β, and TNF-α by mouse neutrophils in vitro after stimulation through TLR9. This data-set and its analysis using the ImmGen regulatory model provide a basis for additional hypothesis-based research on the importance of changes in gene expression in neutrophils in different conditions.
    PLoS ONE 01/2014; 9(10):e108553. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The immune system plays a complex role in the development and progression of pancreatic cancer. Inflammation can promote the formation of premalignant lesions and accelerate pancreatic cancer development. Conversely, pancreatic cancer is characterized by an immunosuppressive environment, which is thought to promote tumor progression and invasion. Here we review the current literature describing the role of the immune response in the progressive development of pancreatic cancer, with a focus on the mechanisms that drive recruitment and activation of immune cells at the tumor site, and our current understanding of the function of the immune cell types at the tumor. Recent clinical and preclinical data are reviewed, detailing the involvement of the immune response in pancreatitis and pancreatic cancer, including the role of specific cytokines and implications for disease outcome. Acute pancreatitis is characterized by a predominantly innate immune response, while chronic pancreatitis elicits an immune response that involves both innate and adaptive immune cells, and often results in profound systemic immune-suppression. Pancreatic adenocarcinoma is characterized by marked immune dysfunction driven by immunosuppressive cell types, tumor-promoting immune cells, and defective or absent inflammatory cells. Recent studies reveal that immune cells interact with cancer stem cells and tumor stromal cells, and these interactions have an impact on development and progression of pancreatic ductal adenocarcinoma (PDAC). Finally, current PDAC therapies are reviewed and the potential for harnessing the actions of the immune response to assist in targeting pancreatic cancer using immunotherapy is discussed.
    World journal of gastroenterology : WJG. 08/2014; 20(32):11160-11181.

Full-text

Download
148 Downloads
Available from
May 26, 2014