PCR and blood culture for detection of Escherichia coli bacteremia in rats.

Klinik für Anästhesiologie, Hygiene Institute, University of Tübingen, Tübingen, Germany.
Journal of Clinical Microbiology (Impact Factor: 4.07). 08/1999; 37(8):2479-82.
Source: PubMed

ABSTRACT Critically ill patients often develop symptoms of sepsis and therefore require microbiological tests for bacteremia that use conventional blood culture (BC) techniques. However, since these patients frequently receive early empirical antibiotic therapy before diagnostic procedures are completed, examination by BC can return false-negative results. We therefore hypothesized that PCR could improve the rate of detection of microbial pathogens over that of BC. To test this hypothesis, male Wistar rats were challenged intravenously with 10(6) CFU of Escherichia coli. Blood was then taken at several time points for detection of E. coli by BC and by PCR with E. coli-specific primers derived from the uidA gene, encoding beta-glucuronidase. In further experiments, cefotaxime (100 or 50 mg/kg of body weight) was administered intravenously to rats 10 min after E. coli challenge. Without this chemotherapy, the E. coli detection rate decreased at 15 min and at 210 min after challenge from 100% to 62% of the animals with PCR and from 100% to 54% of the animals with BC (P, >0.05). Chemotherapy decreased the E. coli detection rate at 25 min and at 55 min after challenge from 100% to 50% with PCR and from 100% to 0% with BC (P, <0.05). Thus, at clinically relevant serum antibiotic levels, PCR affords a significantly higher detection rate than BC in this rat model. The results suggest that PCR could be a useful adjunct tool supplementing conventional BC techniques in diagnosing bacteremia.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Antimicrobial resistance was assessed in indicator E. coli in free-ranging livestock and sympatric wild boar (Sus scrofa) and Iberian ibex (Capra pyrenaica) in a National Game Reserve in NE Spain. The frequency of antimicrobial resistance was low (0 to 7.9%). However, resistance to a third-generation cephalosporin and fluoroquinolones was detected.
    Applied and Environmental Microbiology 07/2013; · 3.95 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In patients with sepsis, diagnosis of blood stream infection (BSI) is a key concern to the therapist. Direct verification of pathogens in the blood stream executed by blood cultures (BC) still is regarded as the gold standard up to date. The quickest possible initiation of an appropriate antimicrobial therapy is a cornerstone of an effective therapy. Moreover, in this view BC can also serve to identify antimicrobial agents to target the pathogen. However, when employing BC the time needed until microbiological results are available ranges from 24 up to 72 h. Moreover, infections caused by multiple pathogens often remain undetected and concurrent antibiotic therapy may lower the overall sensitivity. Alternative pathogen characterization can be performed by polymerase chain reaction (PCR) based amplification methods. Results using PCR can be obtained within 6-8 h. Therefore, the time delay until an appropriate therapy can be reduced enormously. Moreover, these methods have the potential to enhance the sensitivity in the diagnosis of blood stream infections. Therefore, PCR based methods might be a valuable adjunct to present procedures of diagnosing bacteraemia.
    Best practice & research. Clinical anaesthesiology. 06/2013; 27(2):279-88.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Wildlife is increasingly abundant in urban environments, but little is known about the zoonotic pathogens carried by these populations. Urban wild boars are of particular concern because this species is well-known as a pathogen reservoir, and thus, we studied selected zoonotic pathogens in urban wild boars in Barcelona, Spain (n=41). Salmonella enterica was found in 5.00% (95% CI 0.61-16.91) and Campylobacter coli in 4.88% (95% CI 0.6-16.53) of the animals. E. coli O157:H7 and C. jejuni were not found. Other thermophilic Campylobacter were moderately prevalent (19.51%, 95% CI 8.82-34.87). Additionally, we screened for antimicrobial resistance in indicator bacteria: resistance was most frequent in Enterococcus faecium (95% of the isolates were resistant to at least one antimicrobial agent), followed by Enterococcus faecalis (50%) and Escherichia coli (10%). For the first time resistance to linezolid in bacteria carried by wildlife is reported. These findings pose a concern for public health, and thus, further research is needed on wildlife in urban environments.
    Veterinary Microbiology 08/2013; · 3.13 Impact Factor


Available from