Article

Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: an event-related fMRI study.

Department of Neurology, University of Pennsylvania Medical Center, 3 West Gates, Area 9 3400 Spruce St., Philadelphia, PA 19104, USA.
Cognitive Brain Research (Impact Factor: 3.77). 08/1999; 8(2):107-15. DOI: 10.1016/S0926-6410(99)00010-5
Source: PubMed

ABSTRACT We employed a novel event-related fMRI design and analysis technique to explore caudate nucleus contributions to spatial and nonspatial working memory. The spatial condition of a delayed-response task revealed greater mnemonic activation in four of six subjects when the delay period preceded immediately a probe stimulus requiring an overt motor response, as contrasted with a probe requiring no response. This effect was not seen in frontal or parietal cortical areas, and was seen in the caudate nucleus in a formally identical object condition in just one of six subjects. We hypothesized that this pattern of activity represented spatially dependent motor preparation. A second experiment confirmed this hypothesis: delay-period activity of the caudate nucleus showed greater time dependence in a task that featured spatial and motoric memory demands than in a comparable nonspatial task that featured the same response contingencies. These results suggest an important subcortical locus of the dissociation between spatial and nonspatial working memory, and a role for the human caudate nucleus in the integration of spatially coded mnemonic information with motor preparation to guide behavior.

0 Bookmarks
 · 
132 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive deficits are recognized in Parkinson's disease. Understanding cognitive functions mediated by the striatum can clarify some of these impairments and inform treatment strategies. The dorsal striatum, a region impaired in Parkinson's disease, has been implicated in stimulus-response learning. However, most investigations combine acquisition of associations between stimuli, responses, or outcomes (i.e., learning) and expression of learning through response selection and decision enactment, confounding these separate processes. Using neuroimaging, we provide evidence that dorsal striatum does not mediate stimulus-response learning from feedback but rather underlies decision making once associations between stimuli and responses are learned. In the experiment, 11 males and 5 females (mean age 22) learned to associate abstract images to specific button-press responses through feedback in Session 1. In Session 2, they were asked to provide responses learned in Session 1. Feedback was omitted, precluding further feedback-based learning in this session. Using functional magnetic resonance imaging, dorsal striatum activation in healthy young participants was observed at the time of response selection and not during feedback, when greatest learning presumably occurs. Moreover, dorsal striatum activity increased across the duration of Session 1, peaking after most associations were well learned and was significant during Session 2 where no feedback was provided, and therefore no feedback-based learning occurred. Preferential ventral striatum activity occurred during feedback and was maximal early in Session 1. Taken together, the results suggest that the ventral striatum underlies learning associations between stimuli and responses via feedback whereas the dorsal striatum mediates enacting decisions.
    NeuroImage 07/2014; 101. DOI:10.1016/j.neuroimage.2014.07.013 · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The importance of the medial temporal lobe (MTL) for memory of arbitrary associations has been well established. However, the contribution of the MTL in concurrent retrieval of different classes of associations remains unclear. The present fMRI study investigated neural correlates of concurrent retrieval of associative and source memories. Participants studied a list of object pairs with two study tasks and judged the status and context of the pair during test. Associative retrieval was supported by neural activity in bilateral prefrontal cortex and left ventral occipito-temporal cortex, while source recognition was linked to activity in the right caudate. Both the hippocampus and MTL cortex showed retrieval activity for associative and source memory. Importantly, greater brain activity for successful associative recognition accompanied with successful source recognition was evident in left perirhinal and anterior hippocampal regions. These results indicate that the MTL is critical in the retrieval of different classes of associations.
    Neuroscience Letters 08/2014; 581. DOI:10.1016/j.neulet.2014.08.024 · 2.06 Impact Factor
  • Source

Full-text (2 Sources)

Download
28 Downloads
Available from
May 22, 2014