The origin of catecholaminergic fibers in the subdiaphragmatic vagus nerve

Department of Animal Biology and the Institute of Neurological Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104-6045, USA.
Journal of the Autonomic Nervous System 06/1999; 76(2-3):108-17. DOI: 10.1016/S0165-1838(99)00014-4
Source: PubMed


It is known that the vagus nerve contains catecholaminergic fibers. However, the origin of these fibers has not been systematically examined. In this study, we addressed this issue using retrograde tracing from the subdiaphragmatic vagus nerve combined with immunocytochemistry. The cervical and thoracic sympathetic trunk ganglia, the nodose ganglia and the dorsal motor nucleus of the vagus nerve were examined following injection of Fluoro-Gold or cholera toxin horseradish peroxidase conjugate into the trunks of the subdiaphragmatic vagus nerve of rats. Numerous retrogradely labeled neurons were seen in the nodose ganglion and the dorsal motor nucleus of the vagus nerve. Very few labeled neurons were found in the sympathetic ganglia (less than 0.06% of the neurons in either superior cervical ganglion or cervicothoracic ganglion were retrogradely labeled). Double labeling with immunofluoresence for catecholamine synthesizing enzymes revealed that: (1) 92% of all Fluoro-Gold retrogradely labeled tyrosine hydroxylase immunoreactive neurons were found in parasympathetic sources (75% in the dorsal motor nucleus of the vagus nerve and 17% in the nodose ganglia), and only 8% in the cervicothoracic sympathetic ganglia; (2) 12% of the retrogradely labeled catecholaminergic neurons in the dorsal motor nucleus of the vagus nerve were also dopamine-beta-hydroxylase immunopositive neurons; (3) 70% of the retrogradely labeled neurons in the sympathetic ganglia were tyrosine hydroxylase immunopositive and 54% of these catecholaminergic neurons contained dopamine-beta-hydroxylase, while 30% of the retrogradely labeled neurons were non-catecholaminergic neurons. These results indicate that catecholaminergic fibers in the abdominal vagus nerve are primarily dopaminergic and of parasympathetic origin, and that only an extremely small number of these fibers, mostly noradrenergic in nature, arise from postganglionic sympathetic neurons.

11 Reads
  • Source
    • "This pattern was maintained from the rostral to the most caudal part (10Ca) of the dorsal motor nucleus of the vagus where scattered TH neurons were still present. Tract-tracing experiments have demonstrated that catecholaminergic neurons located in the dorsal vagal nucleus send descending projections contributing to the vagus nerve (Ritchie et al., 1982; Yang et al., 1999; Chaillou et al., 2009). Also, TH-positive fibers located in the Amb descend into the vagus nerve (Chaillou et al., 2009). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Vasopressin (VP)-, neuropeptide FF (NPFF)-, and tyrosine hydroxylase (TH)-expressing neurons were studied by means of single and double immunocytochemistry in the human brainstem of controls who died suddenly due to trauma and of patients who suffered from essential hypertension and died due to acute myocardial infarction, while in one case there was brain hemorrhage. In the control and hypertensive groups VP fibers and NPFF neurons and fibers were the most abundantly present in the dorsal vagal complex, especially in the dorsal motor nucleus of the vagus. Numerous VP and NPFF fibers formed synaptic-like contacts with neuronal profiles in the dorsointermediate, centrointermediate, ventrointermediate, caudointermediate, and caudal parts of the dorsal motor nucleus of vagus as well as adjacent medial and intermediate subnuclei of the solitary nucleus. VP, but not NPFF, positive fibers were found to vastly contact TH-positive neuronal profiles in A2/C2, A2, and ambiguus nucleus (Amb). The density of VP fibers in the dorsal motor nucleus of the vagus and Amb did not differ between hypertensive patients and controls, whereas the density of NPFF fibers in hypertensives was 3.19 times lower in the dorsal motor nucleus of vagus and markedly decreased in the Amb. In both groups, VP and NPFF were scarcely present in the pain pathways, suggesting that these peptides are not crucially involved in nociceptive control in human. The reduction of NPFF release within the dorsal motor nucleus and Amb could serve as a possible cause of the impairment of cardiac vagal control in hypertensive patients.
    The Journal of Comparative Neurology 01/2011; 519(1):93-124. DOI:10.1002/cne.22507 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A plethora of neuronal messengers ("classical" transmitters, gaseous messengers, amino acid transmitters, and neuropeptides) are capable of mediating or modulating gastric functions. Accordingly, the stomach is richly innervated. Gastric nerves are either intrinsic to the gastric wall, i.e., they have their cell bodies in the intramural ganglia and thus belong to the enteric nervous system, or they reach the stomach from outside, originating in the brainstem, in sympathetic ganglia, or in sensory ganglia. Topographically, the nerve fibers in the stomach reach all layers from the most superficial portions of the gastric glands to the outer smooth muscle layer. This wide distribution implies that virtually all different cell types may be reached by neuronal messengers. Within the gastric mucosa endocrine and paracrine cells (e.g., gastrin cells, ECL cells, somatostatin cells), exocrine cells (parietal cells, chief cells, mucous cells), smooth muscle cells, and stromal cells are regulated by neuronal messengers. The sensory innervation, responding to capsaicin, plays an important role in mucosal protection, and in ulcer healing. Presumably also other nerves are involved and a plasticity in the neuropeptide expression has been demonstrated at the margin of gastric ulcers. Taken together, available data indicate a complex interplay between hormones, paracrine messengers and neuronal messengers, growth factors and cytokines in the regulation of gastric mucosal activities such as secretion, local blood flow, growth, and restitution after damage.
    Microscopy Research and Technique 03/2000; 48(5):241-57. DOI:10.1002/(SICI)1097-0029(20000301)48:5<241::AID-JEMT2>3.0.CO;2-2 · 1.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Almost all parasympathetic preganglionic motor neurons contain acetylcholine, whereas quite a few motor neurons in the dorsal motor nucleus of the vagus (DMV) contain dopamine. We determined the distribution and ultrastructure of these dopaminergic neurons with double-labeling immunohistochemistry for tyrosine hydroxylase (TH) and the retrograde tracer cholera toxin subunit b (CTb) following its injection into the stomach. A few TH-immunoreactive (TH-ir) neurons were found in the rostral half of the DMV, while a moderate number of these neurons were found in the caudal half. Most of the TH-ir neurons (78.4%) were double-labeled for CTb in the half of the DMV caudal to the area postrema, but only a few TH-ir neurons (5.5%) were double-labeled in the rostral half. About 20% of gastric motor neurons showed TH-immunoreactivity in the caudal half of the DMV, but only 0.3% were TH-ir in the rostral half. In all gastric motor neurons, 8.1% were double-labeled for TH. The ultrastructure of the TH-ir neurons in the caudal DMV was determined with immuno-gold-silver labeling. The TH-ir neurons were small (20.4 x 12.4 microm), round or oval, and contained numerous mitochondria, many free ribosomes, several Golgi apparatuses, a round nucleus and a few Nissl bodies. The average number of axosomatic terminals per section was 4.0. More than half of them contained round synaptic vesicles and made asymmetric synaptic contacts (Gray's type I). Most of the axodendritic terminals contacting TH-ir dendrites were Gray's type I (90%), but a few contained pleomorphic vesicles and made symmetric synaptic contacts (Gray's type II).
    Brain Research 05/2004; 1006(1):66-73. DOI:10.1016/j.brainres.2004.01.056 · 2.84 Impact Factor
Show more