Article

Human heat shock factor 1 is predominantly a nuclear protein before and after heat stress.

Department of Zoology, University of Toronto, Mississauga, Ontario, Canada L5L 1C6.
Journal of Cell Science (Impact Factor: 5.33). 09/1999; 112 ( Pt 16):2765-74.
Source: PubMed

ABSTRACT The induction of the heat shock genes in eukaryotes by heat and other forms of stress is mediated by a transcription factor known as heat shock factor 1 (HSF1). HSF1 is present in unstressed metazoan cells as a monomer with low affinity for DNA, and upon exposure to stress it is converted to an 'active' homotrimer that binds the promoters of heat shock genes with high affinity and induces their transcription. The conversion of HSF1 to its active form is hypothesized to be a multistep process involving physical changes in the HSF1 molecule and the possible translocation of HSF1 from the cytoplasm to the nucleus. While all studies to date have found active HSF1 to be a nuclear protein, there have been conflicting reports on whether the inactive form of HSF is predominantly a cytoplasmic or nuclear protein. In this study, we have made antibodies against human HSF1 and have reexamined its localization in unstressed and heat-shocked human HeLa and A549 cells, and in green monkey Vero cells. Biochemical fractionation of heat-shocked HeLa cells followed by western blot analysis showed that HSF1 was mostly found in the nuclear fraction. In extracts made from unshocked cells, HSF1 was predominantly found in the cytoplasmic fraction using one fractionation procedure, but was distributed approximately equally between the cytoplasmic and nuclear fractions when a different procedure was used. Immunofluorescence microscopy revealed that HSF1 was predominantly a nuclear protein in both heat shocked and unstressed cells. Quantification of HSF1 staining showed that approximately 80% of HSF1 was present in the nucleus both before and after heat stress. These results suggest that HSF1 is predominantly a nuclear protein prior to being exposed to stress, but has low affinity for the nucleus and is easily extracted using most biochemical fractionation procedures. These results also imply that HSF1 translocation is probably not part of the multistep process in HSF1 activation for many cell types.

Full-text

Available from: Neil Winegarden, Apr 17, 2015
0 Followers
 · 
78 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The heat shock response (HSR) is an ancient and highly conserved process that is essential for coping with environmental stresses, including extremes of temperature. Fever is a more recently evolved response, during which organisms temporarily subject themselves to thermal stress in the face of infections. We review the phylogenetically conserved mechanisms that regulate fever and discuss the effects that febrile-range temperatures have on multiple biological processes involved in host defense and cell death and survival, including the HSR and its implications for patients with severe sepsis, trauma, and other acute systemic inflammatory states. Heat shock factor-1, a heat-induced transcriptional enhancer is not only the central regulator of the HSR but also regulates expression of pivotal cytokines and early response genes. Febrile-range temperatures exert additional immunomodulatory effects by activating mitogen-activated protein kinase cascades and accelerating apoptosis in some cell types. This results in accelerated pathogen clearance, but increased collateral tissue injury, thus the net effect of exposure to febrile range temperature depends in part on the site and nature of the pathologic process and the specific treatment provided. © 2014 American Physiological Society. Compr Physiol 4:109-148, 2014.
    01/2014; 4(1):109-48. DOI:10.1002/cphy.c130019
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Detection of cellular stress is of major importance for the survival of cells. During evolution, a network of stress pathways developed, with the heat shock (HS) response playing a major role. The key transcription factor mediating HS signalling activity in mammalian cells is the HS factor HSF1. When activated it binds to the heat shock elements (HSE) in the promoters of target genes like heat shock protein (HSP) genes. They are induced by HSF1 but in addition they integrate multiple signals from different stress pathways. Here, we developed an artificial promoter consisting only of HSEs and therefore selectively reacting to HSF-mediated pathway activation. The promoter is highly inducible but has an extreme low basal level. Direct comparison with the HSPA1A promoter activity indicates that heat-dependent expression can be fully recapitulated by isolated HSEs in human cells. Using this sensitive reporter, we measured the HS response for different temperatures and exposure times. In particular, long heat induction times of 1 or 2 h were compared with short heat durations down to 1 min, conditions typical for burn injuries. We found similar responses to both long and short heat durations but at completely different temperatures. Exposure times of 2 h result in pathway activation at 41 to 44 °C, whereas heat pulses of 1 min lead to a maximum HS response between 47 and 50 °C. The results suggest that the HS response is initiated by a combination of temperature and exposure time but not by a certain threshold temperature.
    Cell Stress and Chaperones 08/2014; 20(2). DOI:10.1007/s12192-014-0540-5 · 2.54 Impact Factor