Article

The biology of hair follicles.

Department of Dermatology, University Hospital Eppendorf, University of Hamburg, Germany.
New England Journal of Medicine (Impact Factor: 54.42). 09/1999; 341(7):491-7. DOI: 10.1056/NEJM199908123410706
Source: PubMed
1 Bookmark
 · 
231 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Emerging studies of treating spinal cord injury (SCI) with adult stem cells led us to evaluate the effects of transplantation of hair follicle stem cells in rats with a compression-induced spinal cord lesion. Here, we proposed a hypothesis that rat hair follicle stem cell transplantation can promote the recovery of injured spinal cord. Compression-induced spinal cord injury was induced in Wistar rats in this study. The bulge area of the rat vibrissa follicles was isolated, cultivated and characterized with nestin as a stem cell marker. 5-Bromo-2'-deoxyuridine (BrdU) labeled bulge stem cells were transplanted into rats with spinal cord injury. Immunohistochemical staining results showed that some of the grafted cells could survive and differentiate into oligodendrocytes (receptor-interacting protein positive cells) and neuronal-like cells (βIII-tubulin positive cells) at 3 weeks after transplantation. In addition, recovery of hind limb locomotor function in spinal cord injury rats at 8 weeks following cell transplantation was assessed using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. The results demonstrate that the grafted hair follicle stem cells can survive for a long time period in vivo and differentiate into neuronal- and glial-like cells. These results suggest that hair follicle stem cells can promote the recovery of spinal cord injury.
    Neural Regeneration Research 12/2013; 8(36):3365-72. · 0.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, various immunosuppressant drugs have been shown to induce hair growth in normal hair as well as in alopecia areata and androgenic alopecia; however, the responsible mechanism has not yet been fully elucidated. In this study, we investigate the influence of mycophenolate (MPA), an immunosuppressant, on the proliferation of human dermal papilla cells (hDPCs) and on the growth of human hair follicles following catagen induction with interferon (IFN)-γ. IFN-γ was found to reduce β-catenin, an activator of hair follicle growth, and activate glycogen synthase kinase (GSK)-3β, and enhance expression of the Wnt inhibitor DKK-1 and catagen inducer transforming growth factor (TGF)-β2. IFN-γ inhibited expression of ALP and other dermal papillar cells (DPCs) markers such as Axin2, IGF-1, and FGF 7 and 10. MPA increased β-catenin in IFN-γ-treated hDPCs leading to its nuclear accumulation via inhibition of GSK3β and reduction of DKK-1. Furthermore, MPA significantly increased expression of ALP and other DPC marker genes but inhibited expression of TGF-β2. Therefore, we demonstrate for the first time that IFN-γ induces catagen-like changes in hDPCs and in hair follicles via inhibition of Wnt/β-catenin signaling, and that MPA stabilizes β-catenin by inhibiting GSK3β leading to increased β-catenin target gene and DP signature gene expression, which may, in part, counteract IFN-γ-induced catagen in hDPCs.
    International Journal of Molecular Sciences 01/2014; 15(9):16800-16815. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hair loss in humans is perplexing and raises many hypothetical explanations. This paper suggests that hair loss in humans is metabolically related to encephalization; and that hair covered hominids would have been unable to evolve large brains because of a dietary restriction of several amino acids which are essential for hair and brain development. We use simulations to imply that hair loss must have preceded increase in brain size & volume. In this respect we see hair loss as a major force in human evolution. We assume that hair reduction required favorable climatic conditions and must have been quick. Using evolutionary and ecological time scales, we pinpoint hair loss to a period around 2.2-2.4 million years ago. The dating is further supported by a rapid selection at that time of the sialic acid deletion mutation which may have protected growing human brains against calcium ion flux. In summary we view encephalization, in part, as a metabolic trade-off between hair and brain. Other biochemical changes may have intervened in the process too; and the deletion mutation of sialic acid hydroxylation may have been involved as well.
    SpringerPlus 01/2014; 3:562.

Full-text (2 Sources)

Download
62 Downloads
Available from
May 22, 2014