Article

A novel potent strategy for gene delivery using a single peptide vector as a carrier.

Centre de Recherches de Biochimie Macromoleculaire, UPR-1086 CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 5, France.
Nucleic Acids Research (Impact Factor: 8.81). 10/1999; 27(17):3510-7. DOI: 10.1093/nar/27.17.3510
Source: PubMed

ABSTRACT We have shown previously that a peptide, MPG, derived from the hydrophobic fusion peptide of HIV-1 gp41 and the hydrophilic nuclear localisation sequence of SV40 large T antigen, can be used as a powerful tool for the delivery of oligonucleotides into cultured cells. Now we extend the potential of MPG to the delivery of nucleic acids into cultured cells. In vitro, MPG interacts strongly with nucleic acids, most likely forming a peptide cage around them, which stabilises and protects them from degradation in cell culture media. MPG is non-cytotoxic, insensitive to serum and efficiently delivers plasmids into several different cell lines in only 1 h. Moreover, MPG enables complete expression of the gene products encoded by the plasmids it delivers into cultured cells. Finally, we have investigated the potential of MPG as an efficient delivery agent for gene therapy, by attempting to deliver antisense nucleic acids targeting an essential cell cycle gene. MPG efficiently delivered a plasmid expressing the full-length antisense cDNA of human cdc25C, which consequently successfully reduced cdc25C expression levels and promoted a block to cell cycle progression. Based on our results, we conclude that MPG is a potent delivery agent for the generalised delivery of nucleic acids as well as of oligonucleotides into cultured cells and believe that its contribution to the development of new gene therapy strategies could be of prime interest.

Download full-text

Full-text

Available from: May C Morris, Jun 16, 2015
0 Followers
 · 
106 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent discovery of new potent therapeutic molecules which do not reach the clinic due to poor delivery and low bioavailability have made the delivery of molecules a keystone in therapeutic development. Several technologies have been designed to improve cellular uptake of therapeutic molecules, including CPPs (cell-penetrating peptides), which represent a new and innovative concept to bypass the problem of bioavailability of drugs. CPPs constitute very promising tools and have been successfully applied for in vivo. Two CPP strategies have been described to date; the first one requires chemical linkage between the drug and the carrier for cellular drug internalization, and the second is based on the formation of stable complexes with drugs, depending on their chemical nature. The Pep and MPG families are short amphipathic peptides, which form stable nanoparticles with proteins and nucleic acids respectively. MPG- and Pep-based nanoparticles enter cells independently of the endosomal pathway and efficiently deliver cargoes, in a fully biologically active form, into a large variety of cell lines, as well as in animal models. This review focuses on the structure-function relationship of non-covalent MPG and Pep-1 strategies, and their requirement for cellular uptake of biomolecules and applications in cultured cells and animal models.
    Biology of the Cell 05/2008; 100(4):201-17. DOI:10.1042/BC20070116 · 3.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell-penetrating peptide mediated uptake of labels appears to follow an equilibrium-like process. However, this assumption is only valid if the peptides are stabile. Hence, in this study we investigate intracellular and extracellular peptide degradation kinetics of two fluorescein labeled cell-penetrating peptides, namely MAP and penetratin, in Chinese hamster ovarian cells. The degradation and uptake kinetics were assessed by RP-HPLC equipped with a fluorescence detector. We show that MAP and penetratin are rapidly degraded both extracellularly and intracellularly giving rise to several degradation products. Kinetics indicates that intracellularly, the peptides exist in (at least) two distinct pools: one that is immediately degraded and one that is stabile. Moreover, the degradation could be decreased by treating the peptides with BSA and phenanthroline and the uptake was significantly reduced by cytochalasin B, chloroquine and energy depletion. The results indicate that the extracellular degradation determines the intracellular peptide concentration in this system and therefore the stability of cell-penetrating peptides needs to be evaluated.
    Biochimica et Biophysica Acta 08/2007; 1768(7):1769-76. DOI:10.1016/j.bbamem.2007.03.029 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We recently showed that the antibacterial histidine rich amphipathic peptide LAH4 has significant DNA transfection capabilities in the absence of serum. To further understand the transfection process and to develop the peptides for future applications, we have combined a range of biochemical and biophysical techniques, including fluorescence assisted cell sorting and (2)H solid-state NMR, to characterise the initial binding of the peptide/DNA complexes to the cell surface and the subsequent release of the complexes from the endosome in the presence of serum. Our results show that both primary and secondary peptide structure play important roles in both of these processes. Specifically, we show that an ideal helix length and positioning of the histidine residues should be maintained to obtain optimal resistance to serum effects and release of DNA from the endosome. Inclusion of d-amino acids at the peptide termini does not reduce serum effects however further enrichment of the peptides with histidine residues can enhance transfection efficiency in the presence of serum. The detailed understanding of these two key stages in the transfection process shows that LAH4-L1 and its derivatives are likely to be highly efficient and robust vectors for a range of applications.
    Journal of Controlled Release 04/2007; 118(1):95-104. DOI:10.1016/j.jconrel.2006.12.004 · 7.26 Impact Factor