A novel potent strategy for gene delivery using a single peptide vector as a carrier.

Centre de Recherches de Biochimie Macromoleculaire, UPR-1086 CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 5, France.
Nucleic Acids Research (Impact Factor: 8.81). 10/1999; 27(17):3510-7. DOI: 10.1093/nar/27.17.3510
Source: PubMed

ABSTRACT We have shown previously that a peptide, MPG, derived from the hydrophobic fusion peptide of HIV-1 gp41 and the hydrophilic nuclear localisation sequence of SV40 large T antigen, can be used as a powerful tool for the delivery of oligonucleotides into cultured cells. Now we extend the potential of MPG to the delivery of nucleic acids into cultured cells. In vitro, MPG interacts strongly with nucleic acids, most likely forming a peptide cage around them, which stabilises and protects them from degradation in cell culture media. MPG is non-cytotoxic, insensitive to serum and efficiently delivers plasmids into several different cell lines in only 1 h. Moreover, MPG enables complete expression of the gene products encoded by the plasmids it delivers into cultured cells. Finally, we have investigated the potential of MPG as an efficient delivery agent for gene therapy, by attempting to deliver antisense nucleic acids targeting an essential cell cycle gene. MPG efficiently delivered a plasmid expressing the full-length antisense cDNA of human cdc25C, which consequently successfully reduced cdc25C expression levels and promoted a block to cell cycle progression. Based on our results, we conclude that MPG is a potent delivery agent for the generalised delivery of nucleic acids as well as of oligonucleotides into cultured cells and believe that its contribution to the development of new gene therapy strategies could be of prime interest.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Poor cellular delivery and low bioavailability of novel potent therapeutic molecules continue to remain the bottleneck of modern cancer and gene therapy. Cell-penetrating peptides have provided immense opportunities for the intracellular delivery of bioactive cargos and have led to the first exciting successes in experimental therapy of muscular dystrophies. This review focuses on the mechanisms by which cell-penetrating peptides gain access to the cell interior and deliver cargos. Recent advances in augmenting delivery efficacy and facilitation of endosomal escape of cargo are presented, and the cell-penetrating peptide-mediated delivery of two of the most popular classes of cargo molecules, oligonucleotides and proteins, is analyzed. The arsenal of tools for oligonucleotide delivery has dramatically expanded in the last decade enabling harnessing of cell-surface receptors for targeted delivery.
    Therapeutic delivery 11/2014; 5(11):1203-22. DOI:10.4155/tde.14.72
  • European Journal of Nanomedicine 01/2013; 5(3). DOI:10.1515/ejnm-2013-0005
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oligonucleotide-based drugs have received considerable attention for their capacity to modulate gene expression very specifically and as a consequence they have found applications in the treatment of many human acquired or genetic diseases. Clinical translation has been often hampered by poor biodistribution, however. Cell-penetrating peptides (CPP) appear as a possibility to increase the cellular delivery of non-permeant biomolecules such as nucleic acids. This review focuses on CPP-delivery of several classes of oligonucleotides (ON), namely antisense oligonucleotides, splice switching oligonucleotides (SSO) and siRNAs. Two main strategies have been used to transport ONs with CPPs: covalent conjugation (which is more appropriate for charge-neutral ON analogues) and non-covalent complexation (which has been used for siRNA delivery essentially). Chemical synthesis, mechanisms of cellular internalization and various applications will be reviewed. A comprehensive coverage of the enormous amount of published data was not possible. Instead, emphasis has been put on strategies that have proven to be effective in animal models of important human diseases and on examples taken from the authors' own expertise. Copyright © 2015. Published by Elsevier B.V.

Full-text (2 Sources)

Available from
Jun 5, 2014