Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice.

Unité d'Immunologie Clinique, INSERM U 225 and Université Pierre et Marie Curie, Paris, France.
Cancer Research (Impact Factor: 8.65). 09/1999; 59(15):3698-704.
Source: PubMed

ABSTRACT Interleukin (IL) 17 is a proinflammatory cytokine secreted mainly by activated human memory CD4 T cells that induces IL-6, IL-8, and nitric oxide. Because IL-6 and IL-8 have been implicated in the pathogenesis of cervical cancer, we investigated the action of IL-17 on human cervical tumor cell lines in vitro and in vivo. We showed that in vitro, IL-17 increases IL-6 and IL-8 secretion by cervical carcinoma cell lines at both protein and mRNA levels. No direct effect of IL-17 on in vitro proliferation of cervical tumor cell lines could be demonstrated. However, two cervical cell lines transfected with a cDNA encoding IL-17 exhibited a significant increase in tumor size as compared to the parent tumor when transplanted in nude mice. This enhanced tumor growth elicited by IL-17 was associated with increased expression of IL-6 and macrophage recruitment at the tumor site. A potential role of IL-17 in modulation of the human cervical tumor phenotype was also supported by its expression on the cervical tumor in patients with CD4 infiltration. IL-17 therefore behaves like a T-cell-specific cytokine with paradoxical tumor-promoting activity. This may partially explain previous reports concerning the deleterious effect of CD4 T cells in cancer.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With 7.6 million deaths globally, cancer according to the World Health Organisation is still one of the leading causes of death worldwide. Interleukin 17 (IL-17) is a cytokine produced by Th17 cells, a T helper cell subset developed from an activated CD4+ T-cell. Whilst the importance of IL-17 in human autoimmune disease, inflammation, and pathogen defence reactions has already been established, its potential role in cancer progression still needs to be updated. Interestingly studies have demonstrated that IL-17 plays an intricate role in the pathophysiology of cancer, from tumorigenesis, proliferation, angiogenesis, and metastasis, to adapting the tumour in its ability to confer upon itself both immune, and chemotherapy resistance. This review will look into IL-17 and summarise the current information and data on its role in the pathophysiology of cancer as well as its potential application in the overall management of the disease.
    Mediators of Inflammation 01/2014; 2014:623759. · 3.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-17 (IL-17A) expression is increased in prostate cancer. This study investigated the expression of IL-17A receptor C (IL-17RC) in prostatic intraepithelial neoplasia (PIN) lesions and the effects of IL-17A on prostatic epithelial cells in in-vitro studies.
    International journal of medical and biological frontiers. 01/2012; 18(8):629-644.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-17 (IL-17) is prevalent in tumor tissue and suppresses effective anti-tumor immune responses. However, the source of the increased tumor-infiltrating IL-17 and its contribution to tumor progression in human gastric cancer remain poorly understood. In this study, we enrolled 112 gastric cancer patients, immunofluorescence was used to evaluate the colocalization of CD3, CD4, CD56, CD20, CD68, and mast cell tryptase (MCT) with IL-17. Immunohistochemistry was used to evaluate the distribution of microvessel density (CD34), CD66b+, CD68+, and FoxP3+ cells in different microanatomical areas. Prognostic value was determined by Kaplan-Meier analysis and a Cox regression model. The results showed that mast cells, but not T cells or macrophages, were the predominant cell type producing IL-17 in gastric cancer. Significant positive correlations were detected between densities of mast cell-derived IL-17 and microvessels, neutrophils, and regulatory T cells (Tregs). Futhermore, we found that the majority of vascular endothelial cells expressing Interleukin-17 receptor (IL-17R). Kaplan-Meier analysis revealed that increasing intratumor infiltrated mast cells and IL-17+ cells, as well as MCT+ IL-17+ cells, were significantly associated with worse overall survival. These findings indicated that mast cells were the major source of IL-17 in gastric cancer, and intratumor IL-17 infiltration may have promoted tumor progression by enhancing angiogenesis in the tumor microenvironment through the axis of IL-17/IL-17R. IL-17-positive mast cells showed a prognostic factor in gastric cancer, indicating that immunotherapy targeting mast cells might be an effective strategy to control intratumor IL-17 infiltration, and consequently reverse immunosuppression in the tumor microenvironment, facilitating cancer immunotherapy.
    PLoS ONE 01/2014; 9(9):e106834. · 3.53 Impact Factor