Article

Effect of arrest time and cerebral perfusion pressure during cardiopulmonary resuscitation on cerebral blood flow, metabolism, adenosine triphosphate recovery, and pH in dogs.

Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, USA.
Critical Care Medicine (Impact Factor: 6.15). 08/1999; 27(7):1335-42. DOI: 10.1097/00003246-199907000-00026
Source: PubMed

ABSTRACT To test the hypothesis that greater cerebral perfusion pressure (CPP) is required to restore cerebral blood flow (CBF), oxygen metabolism, adenosine triphosphate (ATP), and intracellular pH (pHi) levels after variable periods of no-flow than to maintain them when cardiopulmonary resuscitation (CPR) is started immediately.
Prospective, randomized, comparison of three arrest times and two perfusion pressures during CPR in 24 anesthetized dogs.
University cerebral resuscitation laboratory.
We used radiolabeled microspheres to determine CBF and magnetic resonance spectroscopy to derive ATP and pHi levels before and during CPR. Ventricular fibrillation was induced, epinephrine administered, and thoracic vest CPR adjusted to provide a CPP of 25 or 35 mm Hg after arrest times of O, 6, or 12 mins.
When CPR was started immediately after arrest with a CPP of 25 mm Hg, CBF and ATP were 57 +/- 10% and 64 +/- 14% of prearrest (at 10 mins of CPR). In contrast, CBF and ATP were minimally restored with a CPP at 25 mm Hg after a 6-min arrest time (23 +/- 5%, 16 +/- 5%, respectively). With a CPP of 35 mm Hg, extending the no-flow arrest time from 6 to 12 mins reduced reflow from 71 +/- 11% to 37 +/- 7% of pre-arrest and reduced ATP recovery from 60 +/- 11% to 2 +/- 1% of pre-arrest. After 6- or 12-min arrest times, brainstem blood flow was restored more than supratentorial blood flow, but cerebral pHi was never restored.
A CPP of 25 mm Hg maintains supratentorial blood flow and ATP at 60% to 70% when CPR starts immediately on arrest, but not after a 6-min delay. A higher CPP of 35 mm Hg is required to restore CBF and ATP when CPR is delayed for 6 mins. After a 12-min delay, even the CPP of 35 mm Hg is unable to restore CBF and ATP. Therefore, increasing the arrest time at these perfusion pressures increases the resistance to reflow sufficient to impair restoration of cerebral ATP.

0 Followers
 · 
60 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: High quality chest compressions is the most significant factor related to improved short-term and long-term outcome in cardiac arrest. However, considerable controversy exists over the mechanisms involved in driving blood flow. Objectives: The aim of this systematic review is to elucidate major mechanisms involved in effective compression-mediated blood flow during adult cardiopulmonary resuscitation (CPR). Design and setting: Systematic review of studies identified from the bibliographic databases of PubMed/Medline, Cochrane, and Scopus. Selection criteria: All human and animal studies including information on the responsible mechanisms of compression-related blood flow. Data collection and analysis: Two reviewers (MG, TX) independently screened all potentially relevant titles and abstracts for eligibility, by using a standardized data-worksheet. Main results: Forty seven studies met the inclusion criteria. Because of the heterogeneity in outcome measures, quantitative synthesis of evidence was not feasible. Evidence was critically synthesized in order to answer the review questions, taking into account study heterogeneity and validity. The number of included studies per category is as follows: blood flow during chest compression, nine studies; blood flow during chest decompression, six studies; effect of chest compression on cerebral blood flow, eight studies; active compression-decompression CPR, 14 studies; and effect of ventilation on compression-related blood flow, 13 studies. Conclusion: The evidence so far is inconclusive regarding the major responsible mechanism in compression-related blood flow. Although both ` cardiac pump' and ` thoracic pump' have a key role, the effect of each mechanism is highly depended on other resuscitation parameters, such as positive pressure ventilation and compression depth.
    Resuscitation 09/2014; 85(11). DOI:10.1016/j.resuscitation.2014.08.032 · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Cardiac arrest (CA) survivors experience cognitive deficits including post-traumatic stress disorder (PTSD). It is unclear whether these are related to cognitive/mental experiences and awareness during CPR. Despite anecdotal reports the broad range of cognitive/mental experiences and awareness associated with CPR has not been systematically studied. Methods: The incidence and validity of awareness together with the range, characteristics and themes relating to memories/cognitive processes during CA was investigated through a 4 year multi-center observational study using a three stage quantitative and qualitative interview system. The feasibility of objectively testing the accuracy of claims of visual and auditory awareness was examined using specific tests. The outcome measures were (1) awareness/memories during CA and (2) objective verification of claims of awareness using specific tests. Results: Among 2060 CA events, 140 survivors completed stage 1 interviews, while 101 of 140 patients completed stage 2 interviews. 46% had memories with 7 major cognitive themes: fear; animals/plants; bright light; violence/persecution; deja-vu; family; recalling events post-CA and 9% had NDEs, while 2% described awareness with explicit recall of 'seeing' and 'hearing' actual events related to their resuscitation. One had a verifiable period of conscious awareness during which time cerebral function was not expected. Conclusions: CA survivors commonly experience a broad range of cognitive themes, with 2% exhibiting full awareness. This supports other recent studies that have indicated consciousness may be present despite clinically undetectable consciousness. This together with fearful experiences may contribute to PTSD and other cognitive deficits post CA.
    Resuscitation 10/2014; 85(12). DOI:10.1016/j.resuscitation.2014.09.004 · 3.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in resuscitation science have indicated that, contrary to perception, death by cardiorespiratory criteria can no longer be considered a specific moment but rather a potentially reversible process that occurs after any severe illness or accident causes the heart, lungs, and brain to stop functioning. The resultant loss of vital signs of life (and life processes) is used to declare a specific time of death by physicians globally. When medical attempts are made to reverse this process, it is commonly referred to as cardiac arrest; however, when these attempts do not succeed or when attempts are not made, it is called death by cardiorespiratory criteria. Thus, biologically speaking, cardiac arrest and death by cardiorespiratory criteria are synonymous. While resuscitation science has provided novel opportunities to reverse death by cardiorespiratory criteria and treat the potentially devastating consequences of the resultant postresuscitation syndrome, it has also inadvertently provided intriguing insights into the likely mental and cognitive experience of death. Recollections reported by millions of people in relation to death, so-called out-of-body experiences (OBEs) or near-death experiences (NDEs), are often-discussed phenomena that are frequently considered hallucinatory or illusory in nature; however, objective studies on these experiences are limited. To date, many consistent themes corresponding to the likely experience of death have emerged, and studies have indicated that the scientifically imprecise terms of NDE and OBE may not be sufficient to describe the actual experience of death. While much remains to be discovered, the recalled experience surrounding death merits a genuine scientific investigation without prejudice.
    Annals of the New York Academy of Sciences 11/2014; 1330(1). DOI:10.1111/nyas.12582 · 4.31 Impact Factor