Structure of the alpha-actinin rod: molecular basis for cross-linking of actin filaments.

Structural Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany.
Cell (Impact Factor: 33.12). 09/1999; 98(4):537-46.
Source: PubMed

ABSTRACT We have determined the crystal structure of the two central repeats in the alpha-actinin rod at 2.5 A resolution. The repeats are connected by a helical linker and form a symmetric, antiparallel dimer in which the repeats are aligned rather than staggered. Using this structure, which reveals the structural principle that governs the architecture of alpha-actinin, we have devised a plausible model of the entire alpha-actinin rod. The electrostatic properties explain how the two alpha-actinin subunits assemble in an antiparallel fashion, placing the actin-binding sites at both ends of the rod. This molecular architecture results in a protein that is able to form cross-links between actin filaments.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The spectrin superfamily is composed of proteins involved in cytolinker functions. Their main structural feature is a large central subdomain with numerous repeats folded in triple helical coiled-coils. Their similarity of sequence was considered to be low without detailed quantification of the intra- and intermolecular levels. Among the superfamily, we considered as essential to propose an overview of the surface properties of all the repeats of the five proteins of the spectrin family, namely α- and β-spectrins, α-actinin, dystrophin and utrophin. Therefore, the aim of this work was to obtain a quantitative comparison of all the repeats at both the primary sequence and the three-dimensional levels. For that purpose, we applied homology modelling methods to obtain structural models for successive and overlapping tandem repeats of the human erythrocyte α- and β-spectrins and utrophin, as previously undertaken for dystrophin, and we used the known structure of α-actinin. The matrix calculation of the pairwise similarities of all the repeat sequences and the electrostatic and hydrophobic surface properties throughout the protein family support the view that spectrins and α-actinin on one hand and utrophin and dystrophin on the other hand share some structural similarities, but a detailed molecular characterisation highlights substantial differences. The repeats within the family are far from identical, which is consistent with their multiple interactions with different cellular partners, including proteins and membrane lipids.
    Journal of Structural Biology 03/2014; · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The redox-status of cells is involved in the regulation of several cellular stress-response pathways. It is frequently altered by xenobiotics as well as by environmental stressors. Thus, there is an increasing interest in understanding the redox-status of proteins in different scenarios. Recent advances in proteomics enable the measurement of oxidative lesions in a wide range of proteins, opening the door to the sensitive detection of toxicity targets and helping to decipher the molecular impact of pollutants and environmental stressors. The present study applies the measurement of protein carbonyls, the most common oxidative lesion of proteins, to gel-based proteomics in Daphnia magna. Daphnids were exposed to copper and paraquat, two well-known pro-oxidants. Catalase activity was decreased by paraquat, while global measurement of protein carbonyls and thiols indicated no change upon treatment. Despite the absence of observed oxidative stress, two-dimensional electrophoresis of the daphnid proteins and measurement of their carbonylation status revealed that 32 features were significantly affected by the treatments, showing higher sensitivity than single measurements. Identified proteins affected by copper indicated a decrease in the heat-shock response (HSR), while paraquat affected glycolysis. This study demonstrates the applicability of redox-proteomics in daphnids, as well as indicating that the HSR plays a counter-intuitive role in metal resistance in daphnids. Environ Toxicol Chem © 2014 SETAC.
    Environmental Toxicology and Chemistry 09/2014; · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic spines are micron-sized protrusions that constitute the primary post-synaptic sites of excitatory neurotransmission in the brain. Spines mature from a filopodia-like protrusion into a mushroom-shaped morphology with a post-synaptic density (PSD) at its tip. Modulation of the actin cytoskeleton drives these morphological changes as well as the spine dynamics that underlie learning and memory. Several PSD molecules respond to glutamate receptor activation and relay signals to the underlying actin cytoskeleton to regulate the structural changes in spine and PSD morphology. α-Actinin-2 is an actin filament cross-linker, which localizes to dendritic spines, enriched within the post-synaptic density, and implicated in actin organization. We show that loss of α-actinin-2 in rat hippocampal neurons creates an increased density of immature, filopodia-like protrusions that fail to mature into a mushroom-shaped spine during development. α-Actinin-2 knockdown also prevents the recruitment and stabilization of the PSD in the spine, resulting in failure of synapse formation, and an inability to structurally respond to chemical stimulation of the N-methyl-D-aspartate (NMDA)-type glutamate receptor. The Ca2+-insensitive EF-hand motif in α-actinin-2 is necessary for the molecule's function in regulating spine morphology and PSD assembly, since exchanging it for the similar but Ca2+-sensitive domain from α-actinin-4, another α-actinin isoform, inhibits its function. Furthermore, when the Ca2+-insensitive domain from α-actinin-2 is inserted into α-actinin-4 and expressed in neurons, it creates mature spines. These observations support a model whereby α-actinin-2, partially through its Ca2+-insensitive EF-hand motif, nucleates PSD formation via F-actin organization and modulates spine maturation to mediate synaptogenesis.
    PLoS ONE 07/2014; 9(7):e101770. · 3.53 Impact Factor


Available from
Dec 15, 2014