Antibody-dependent reductions in mouse hookworm burden after vaccination with Ancylostoma caninum secreted protein 1.

Medical Helminthology Laboratory, Department of Epidemiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
The Journal of Infectious Diseases (Impact Factor: 5.85). 12/1999; 180(5):1674-81. DOI: 10.1086/315059
Source: PubMed

ABSTRACT Vaccination of mice with either third-stage Ancylostoma caninum infective hookworm larvae (L3) or alum-precipitated recombinant Ancylostoma secreted protein 1 from A. caninum (Ac-ASP-1) results in protection against hookworm challenge infections. Vaccine protection is manifested by reductions in lung hookworm burdens at 48 h postchallenge. Mice actively immunized 4 times with Ac-ASP-1 also exhibited reductions in hookworm burden in the muscles. Hookworm burden reductions from Ac-ASP-1 immunization were associated with elevations in all immunoglobulin subclasses, with the greatest rise observed in host IgG1 and IgG2b. The addition of a fourth immunization resulted in even higher levels of IgG and IgE. In contrast, L3-vaccinated mice exhibited marked elevations in IgG1 and IgM, including anti-Ac-ASP-1 IgM antibody. Passive immunization with pooled sera from recombinant Ac-ASP-1-vaccinated mice also resulted in lung hookworm burden reductions. It is hypothesized that recombinant Ac-ASP-1 vaccinations elicit antibody that interferes with parasite larval migration.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structure was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins.
    Acta Crystallographica Section D Biological Crystallography 05/2011; 67(Pt 5):455-62. · 12.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Similar T helper (Th)2-type immune responses are generated against different helminth parasites, but the mechanisms that initiate Th2 immunity, and the specific immune components that mediate protection against these parasites, can vary greatly. B cells are increasingly recognized as important during the Th2-type immune response to helminths, and B cell activation might be a target for effective vaccine development. Antibody production is a function of B cells during helminth infection and understanding how polyclonal and antigen-specific antibodies contribute should provide important insights into how protective immunity develops. In addition, B cells might also contribute to the host response against helminths through antibody-independent functions including, antigen presentation, as well as regulatory and effector activity. In this review, we examine the role of B cells during Th2-type immune response to these multicellular parasites.
    Trends in Immunology 02/2011; 32(2):80-8. · 9.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown that intradermally (ID) injected B. pahangi L3s migrate through various tissues and into the lymphatics of gerbils in a distinct pattern. Excretory/secretory products (ES) produced at the time of invasion of B. pahangi are likely to be important in this early migration phase of the parasite life cycle in their rodent host. Hence, early L3 ES was collected from 24 hr in vitro cultures of B. pahangi L3 larvae and used in immunization experiments to investigate the effect of immunity to early L3 ES on worm migration, survival and development of B. pahangi. Immunization of gerbils with ES in RIBI adjuvant produced antibodies to numerous ES proteins eliciting a strong humoral response to ES and indirect fluorescent antibody (IFA) assay using anti-ES serum recognized the ES proteins on the surface of B. pahangi L3 larvae. Following ES immunization, gerbils were challenged either ID or intraperitoneally (IP) with 100 L3s of B. pahangi and euthanized at 3 or 106 days post inoculation (DPI). Immunization with early ES slowed the migration of ID inoculated L3 at 3DPI and significantly altered the locations of adult worms at 106 DPI. Immunization did not induce protection in any treatment group. However, immunized animals had significantly fewer microfilariae per female worm suggesting the antigens in ES are important in microfilariae development or survival in the host. The number of lymphatic granulomas was also significantly reduced in ES immunized animals. It is important to note that microfilariae serve as a nidus in these granulomas. Our results shows immunization with early B. malayi L3 ES alters the worm migration, affects circulating microfilarial numbers and reduces lymphatic granulomas associated with B. pahangi infection in gerbils.
    Experimental Parasitology 08/2013; · 2.15 Impact Factor