Association of in vitro invasiveness and gene expression of estrogen receptor, progesterone receptor, pS2 and plasminogen activator inhibitor-1 in human breast cancer cell lines.

Division of Gynecology, Molecular Oncology Group, University of Vienna, Austria.
Breast Cancer Research and Treatment (Impact Factor: 4.2). 08/1999; 56(1):91-7. DOI: 10.1023/A:1006262501062
Source: PubMed

ABSTRACT The invasive potential of tumor cells is usually tested either by in vitro invasion assays which evaluate cell spreading ability in basement membrane-like matrices or by in vivo invasion assays in nude mice. Both methods are laborious and time-consuming. Tumor invasiveness is accompanied by the changes in expression of various genes. The invasive behavior of cells is therefore represented by certain gene expression patterns. The purpose of this study was to investigate whether expression patterns of several genes are characteristic for the invasiveness of cultured cells. We examined the mRNA levels of estrogen receptor (ER), progesterone receptor (PR), estrogen inducible pS2 and plasminogen activator inhibitor-1 (PAI-1) in 23 cell lines derived from benign and malignant breast tissues using a competitive reverse transcription-polymerase chain reaction (cRT-PCR) system. We also evaluated the invasiveness of these cell lines by their ability to penetrate into a collagen-fibroblast matrix. We demonstrate that the gene expression pattern of breast cell lines is clearly associated with their in vitro invasiveness. In general, cells with ER, PR, pS2 but no PAI-1 expression showed a non-invasive phenotype, while cells expressing PAI-1 mRNA but not ER mRNA are invasive. Our study indicates that the invasiveness of breast cancer cell lines is characterized by PAI-1 gene expression and the lack of ER mRNA. This suggests that PAI-1 may participate in the invasive process.

Download full-text


Available from: Dan Cacsire Castillo-Tong, Jun 19, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: A major therapeutic challenge for breast cancer is the ability of cancer cells to evade killing of conventional chemotherapeutic agents. We have recently reported the actin-bundling protein (fascin) as a major regulator of breast cancer metastasis and survival. Methods: Survival of breast cancer patients that received chemotherapy and xenograft tumour model was used to assess the effect of chemotherapy on fascin-positive and -negative breast cancer cells. Molecular and cellular assays were used to gain in-depth understanding of the relationship between fascin and chemoresistance. Results: We showed a significant correlation between fascin expression and shorter survival in breast cancer patients who received chemotherapy. In xenograft experiments, fascin-positive cancer cells displayed significantly more resistance to chemotherapy-mediated apoptotic cell death than fascin-negative counterparts. This increased chemoresistance was at least partially mediated through PI3K/Akt signalling, and was paralleled by increased FAK phosphorylation, enhanced expression of the inhibitor of apoptosis proteins (XIAP and Livin) and suppression of the proapoptotic markers (caspase 9, caspase 3 and PARP). Conclusions: This is the first report to demonstrate fascin involvement in breast cancer chemotherapeutic resistance, supporting the development of fascin-targeting drugs for better treatment of chemoresistance breast cancer.
    British Journal of Cancer 08/2014; 111(8). DOI:10.1038/bjc.2014.453 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hematogenous metastasis involves a glycoprotein mediated adhesion cascade of tumor cells with E-selectin on the endothelial layer of the blood vessels. Cell-cell interactions play a major role in cancer metastasis and invasiveness. Intercellular communication between two cancer cells or between a cancer cell with a stromal cell in the microenvironment such as fibroblasts or inflammatory cells play an important role in metastatic invasion. Culturing tumor cells as 3D spheroids can recapitulate these physiologically relevant cell-cell interactions. The heterogeneity in primary tumors is attributed to cell subpopulations with varying degree of invasiveness. Co-culturing cancer cells with different phenotypes as 3D spheroids can mimic this heterogeneity. Here we report the effect of homotypic and heterotypic interactions in breast cancer cells cultured as 3D spheroids on polydimethylsiloxane (PDMS) on the adhesion phenotype to E-selectin. We show that breast cancer cell lines (BT20 and MCF7) propagating as 3D spheroids on PDMS exhibit a stronger interaction with human recombinant E-selectin when compared to their respective monolayer grown counterparts on tissue culture plate (TCP). Matrigel invasion assay also indicated that BT20 and MCF7 spheroids were more invasive than BT20 and MCF7 cells grown as monolayers. To mimic tumor heterogeneity in vitro, a co-culture model included tumorigenic cell lines BT20, MCF7 and a non-tumorigenic mammary epithelial cell line MCF10A. These cell lines were cultured together in equal seeding ratio on PDMS to generate co-culture spheroids. The heterotypic interactions in the co-culture model resulted in enhancement of the adhesion of the most invasive BT20 cell line to E-selectin. BT20 cells in co-culture bound to the greatest degree to soluble E-selectin compared to MCF7 and MCF10A cells in co-culture. Co-invasion assay with co-culture spheroids indicated that BT20 cells in co-culture were more invasive than MCF7 and MCF10A cells. The results presented here indicate that homotypic and heterotypic interaction of cancer cells favor adhesion to E-selectin thus representing a complexity beyond planar cell culture. Also, when cells of different phenotypes are mixed, the heterogeneity enhances the adhesive phenotype and invasiveness of the most invasive cell population. The results challenge the classic use of planar cell culture for evaluating the adhesion of cancer cells to E-selectin and establish our co-culture technique as a model that can help investigative studies in metastasis and invasiveness of breast and other types of cancers.
    Biomaterials 09/2012; 33(35):9037-48. DOI:10.1016/j.biomaterials.2012.08.052 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Tissue factor (TF) pathway inhibitor-1 (TFPI) is expressed in several malignant tissues- and cell lines and we recently reported that it possesses anti-tumor effects in breast cancer cells, indicating a biological role of TFPI in cancer. The two main splice variants of TFPI; TFPIα and TFPIβ, are both able to inhibit TF-factor VIIa (FVIIa) activity in normal cells, but only TFPIα circulates in plasma. The functional importance of TFPIβ is therefore largely unknown, especially in cancer cells. We aimed to characterize the expression and function of TFPIα, TFPIβ, and TF in a panel of tumor derived breast cancer cell lines in comparison to normal endothelial cells. Methods TFPIα, TFPIβ, and TF mRNA and protein measurements were conducted using qRT-PCR and ELISA, respectively. Cell-associated TFPI was detected after phosphatidylinositol-phospholipase C (PI-PLC) and heparin treatment by flow cytometry, immunofluorescence, and Western blotting. The potential anticoagulant activity of cell surface TFPI was determined in a factor Xa activity assay. Results The expression of both isoforms of TFPI varied considerably among the breast cancer cell lines tested, from no expression in Sum149 cells to levels above or in the same range as normal endothelial cells in Sum102 and MDA-MB-231 cells. PI-PLC treatment released both TFPIα and TFPIβ from the breast cancer cell membrane and increased TF activity on the cell surface, showing TF-FVIIa inhibitory activity of the glycosylphosphatidylinositol- (GPI-) anchored TFPI. Heparin treatment released TFPIα without decreasing the cell surface levels, thus indicating the presence of intracellular storage pools of TFPIα in the breast cancer cells. Conclusion GPI-attached TFPI located at the surface of breast cancer cells inhibited TF activity and could possibly reduce TF signaling and breast cancer cell growth locally, indicating a therapeutic potential of the TFPIβ isoform.
    Journal of Hematology & Oncology 01/2013; 6(1). DOI:10.1186/1756-8722-6-5 · 4.93 Impact Factor