Article

A fluorescence-based high-performance liquid chromatographic assay to determine acid ceramidase activity.

Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, 10029, USA.
Analytical Biochemistry (Impact Factor: 2.58). 11/1999; 274(2):264-9. DOI: 10.1006/abio.1999.4284
Source: PubMed

ABSTRACT Acid ceramidase (N-acylsphingosine amidohydrolase) is the lysosomal enzyme required to hydrolyze the N-acyl linkage between the fatty acid and sphingosine moieties in ceramide. A deficiency of acid ceramidase activity results in the lipid storage disorder, Farber disease. This study reports a new assay method to detect acid ceramidase activity in vitro using Bodipy or lissamine rhodamine-conjugated ceramide (C12 ceramide; dodecanoylsphingosine). Using mouse kidney extracts as the source of acid ceramidase activity, this new method was compared with an assay using radioactive C12 ceramide (N-[(14)C]-dodecanoylsphingosine) as a substrate. The Bodipy C12 ceramide substrate provided data very similar to those of the radioactive substrate, but under the experimental conditions tested, it was significantly more sensitive. Using Bodipy C12 ceramide, femtomole quantities of the product, Bodipy dodecanoic acid, could be detected, providing an accurate measure of acid ceramidase activity as low as 0.1 pmol/mg protein/h. Acid ceramidase activities in skin fibroblasts and EBV-transformed lymphoblasts from Farber disease patients were around 7.8 and 10% of those in normal cells, respectively, confirming the specificity of this new assay method. Based on these results, we suggest that this fluorescence-based, high-performance liquid chromatographic technique is a reliable, rapid, and highly sensitive method to determine acid ceramidase activity, and that it could be useful wherever the in vitro detection of acid ceramidase activity is of importance.

0 Bookmarks
 · 
55 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has recently become evident that at least five ceramidase (CDase) isoforms are present in human epidermis, and that specifically acidic CDase (aCDase) and alkaline CDase (alkCDase) activities increase during keratinocyte differentiation, and thus might play a pivotal role(s) in permeability barrier function. Prior to investigating their possible roles in the epidermal barrier function, it is necessary to characterize basic kinetic parameters for these enzymes, as well as to determine the effects of the established CDase inhibitors and their activities. In this study, assays for both aCDase and alkCDase activities in fully differentiated human epidermis were optimized using a radiolabeled substrate. These studies revealed that aCDase activity is substantially higher than alkCDase activity, and that both isoenzymes are inhibited by a CDase inhibitor N-oleylethanolamine. These findings were also confirmed using an in situ enzyme assay.
    Skin pharmacology and physiology 01/2007; 20(4):187-94. · 2.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ceramide is an important cellular lipid involved in signal transduction and the biosynthesis of complex sphingolipids. It can be hydrolyzed into sphingosine, another important signaling lipid, by the activity of ceramidases. Point mutations in the gene (Asah1) encoding one ceramidase, acid ceramidase (AC), lead to the lysosomal storage disorder Farber disease (FD). To investigate the role of AC in mammalian development, we disrupted the mouse gene Asah1 in embryonic stem cells by homologous recombination mediated insertion of an AC targeting vector into the wild-type sequence. Genotype analysis of over 150 offspring or embryos from heterozygous intercrosses revealed an absence of Asah1(-/-) individuals at embryonic day (E) 8.5 or later, although the ratio of wild-type to Asah1(+/-) individuals from these intercrosses was 1:2. Northern blot analysis showed that AC expression was turned on early in development, by E7.0, and continued through at least E17. In contrast, expression of the related lipid hydrolase, acid sphingomyelinase, was shut down by E11. Asah1(+/-) mice survived and lived a normal lifespan, but developed a progressive lipid storage disease in several of their organs, particularly the liver. These histopathological findings in Asah1(+/-) animals correlated with an up to twofold increase in the ceramide content of these tissues and a reduction n AC activity, confirming that the gene insertion event disrupted AC activity and ceramide metabolism. These results provide direct in vivo evidence that normal ceramide metabolism, and AC activity in particular, is essential for mammalian development. The animals and embryos described here should be a valuable resource for investigators studying the role of ceramide in cell growth and development, as well as those interested in the pathogenesis of FD and other sphingolipid storage disorders.
    Genomics 03/2002; 79(2):218-24. · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Computer-assisted database analysis of sequences homologous to human acid ceramidase (ASAH) revealed a 1233-bp cDNA (previously designated cPj-LTR) whose 266-amino-acid open reading frame had approximately 36% identity with the ASAH polypeptide. Based on this high degree of homology, we undertook further molecular characterization of cPj-LTR and now report the full-length cDNA sequence, complete gene structure (renamed human ASAHL since it is a human acid ceramidase-like sequence), chromosomal location, primer extension and promoter analysis, and transient expression results. The full-length human ASAHL cDNA was 1825 bp and contained an open-reading frame encoding a 359-amino-acid polypeptide that was 33% identical and 69% similar to the ASAH polypeptide over its entire length. Numerous short regions of complete identity were observed between these two sequences and two sequences obtained from the Caenorhabditis elegans genome database. The 30-kb human ASAHL genomic sequence contained 11 exons, which ranged in size from 26 to 671 bp, and 10 introns, which ranged from 150 bp to 6.4 kb. The gene was localized to the chromosomal region 4q21.1 by fluorescence in situ hybridization analysis. Northern blotting experiments revealed a major 2.0-kb ASAHL transcript that was expressed at high levels in the liver and kidney, but at relatively low levels in other tissues such as the lung, heart, and brain. Sequence analysis of the 5'-flanking region of the human ASAHL gene revealed a putative promoter region that lacked a TATA box and was GC rich, typical features of a housekeeping gene promoter, as well as several tissue-specific and/or hormone-induced transcription regulatory sites. 5'-Deletion analysis localized the promoter activity to a 1. 1-kb fragment within this region. A major transcription start site also was located 72 bp upstream from the ATG translation initiation site by primer extension analysis. Expression analysis of a green fluorescence protein/ASAHL fusion protein in COS-1 cells revealed a punctate, perinuclear distribution, although no acid ceramidase activity was detected in the transfected cells using a fluorescence-based in vitro assay system.
    Genomics 12/1999; 62(2):232-41. · 3.01 Impact Factor