Article

A fluorescence-based high-performance liquid chromatographic assay to determine acid ceramidase activity.

Department of Human Genetics, Mount Sinai School of Medicine, New York, New York, 10029, USA.
Analytical Biochemistry (Impact Factor: 2.58). 11/1999; 274(2):264-9. DOI: 10.1006/abio.1999.4284
Source: PubMed

ABSTRACT Acid ceramidase (N-acylsphingosine amidohydrolase) is the lysosomal enzyme required to hydrolyze the N-acyl linkage between the fatty acid and sphingosine moieties in ceramide. A deficiency of acid ceramidase activity results in the lipid storage disorder, Farber disease. This study reports a new assay method to detect acid ceramidase activity in vitro using Bodipy or lissamine rhodamine-conjugated ceramide (C12 ceramide; dodecanoylsphingosine). Using mouse kidney extracts as the source of acid ceramidase activity, this new method was compared with an assay using radioactive C12 ceramide (N-[(14)C]-dodecanoylsphingosine) as a substrate. The Bodipy C12 ceramide substrate provided data very similar to those of the radioactive substrate, but under the experimental conditions tested, it was significantly more sensitive. Using Bodipy C12 ceramide, femtomole quantities of the product, Bodipy dodecanoic acid, could be detected, providing an accurate measure of acid ceramidase activity as low as 0.1 pmol/mg protein/h. Acid ceramidase activities in skin fibroblasts and EBV-transformed lymphoblasts from Farber disease patients were around 7.8 and 10% of those in normal cells, respectively, confirming the specificity of this new assay method. Based on these results, we suggest that this fluorescence-based, high-performance liquid chromatographic technique is a reliable, rapid, and highly sensitive method to determine acid ceramidase activity, and that it could be useful wherever the in vitro detection of acid ceramidase activity is of importance.

0 Bookmarks
 · 
47 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Farber disease is a rare lysosomal storage disorder (LSD) that manifests due to acid ceramidase (AC) deficiencies and ceramide accumulation. We present a preclinical gene therapy study for Farber disease employing a lentiviral vector (LV-huAC/huCD25) in three enzymatically normal nonhuman primates. Autologous, mobilized peripheral blood (PB) cells were transduced and infused into fully myelo-ablated recipients with tracking for at least 1 year. Outcomes were assessed by measuring the AC specific activity, ceramide levels, vector persistence/integration, and safety parameters. We observed no hematological, biochemical, radiological, or pathological abnormalities. Hematological recovery occurred by approximately 3 weeks. Vector persistence was observed in PB and bone marrow (BM) cells by qualitative and quantitative PCR. We did not observe any clonal proliferation of PB and BM cells. Importantly, AC-specific activity was detected above normal levels in PB and BM cells analyzed post-transplantation and in spleens and livers at the endpoint of the study. Decreases of ceramide in PB cells as well as in spleen and liver tissues were seen. We expect that this study will provide a roadmap for implementation of clinical gene therapy protocols targeting hematopoietic cells for Farber disease and other LSDs.
    Human gene therapy 01/2011; 22(6):679-87. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Acid ceramidase is required to maintain the metabolic balance of several important bioactive lipids, including ceramide, sphingosine and sphingosine-1-phosphate. Here we show that addition of recombinant acid ceramidase (rAC) to primary chondrocyte culture media maintained low levels of ceramide and led to elevated sphingosine by 48 hours. Surprisingly, after three weeks of expansion the chondrogenic phenotype of these cells also was markedly improved, as assessed by a combination of histochemical staining (Alcian Blue and Safranin-O), western blotting (e.g., Sox9, aggrecan, collagen 2A1), and/or qPCR. The same effects were evident in rat, equine and human cells, and were observed in monolayer and 3-D cultures. rAC also reduced the number of apoptotic cells in some culture conditions, contributing to overall improved cell quality. In addition to these effects on primary chondrocytes, when rAC was added to freshly harvested rat, equine or feline bone marrow cultures an ∼2-fold enrichment of mesenchymal stem cells (MSCs) was observed by one week. rAC also improved the chondrogenic differentiation of MSCs, as revealed by histochemical and immunostaining. These latter effects were synergistic with TGF-beta1. Based on these results we propose that rAC could be used to improve the outcome of cell-based cartilage repair by maintaining the quality of the expanded cells, and also might be useful in vivo to induce endogenous cartilage repair in combination with other techniques. The results also suggest that short-term changes in sphingolipid metabolism may lead to longer-term effects on the chondrogenic phenotype.
    PLoS ONE 01/2013; 8(4):e62715. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Treatment with intravenous enzyme replacement therapy and hematopoietic stem cell transplantation for mucopolysaccharidosis (MPS) type I does not address joint disease, resulting in persistent orthopedic complications and impaired quality of life. A proof-of-concept study was conducted to determine the safety, tolerability, and efficacy of intra-articular recombinant human iduronidase (IA-rhIDUA) enzyme replacement therapy in the canine MPS I model. Methods Four MPS I dogs underwent monthly rhIDUA injections (0.58 mg/joint) into the right elbow and knee for six months. Contralateral elbows and knees concurrently received normal saline. No intravenous rhIDUA therapy was administered. Monthly blood counts, chemistries, anti-rhIDUA antibody titers, and synovial fluid cell counts were measured. Lysosomal storage of synoviocytes and chondrocytes, synovial macrophages and plasma cells were scored at baseline and one month following the final injection. Results All injections were well-tolerated without adverse reactions. One animal required prednisone for spinal cord compression. There were no clinically significant abnormalities in blood counts or chemistries. Circulating anti-rhIDUA antibody titers gradually increased in all dogs except the prednisone-treated dog; plasma cells, which were absent in all baseline synovial specimens, were predominantly found in synovium of rhIDUA-treated joints at study-end. Lysosomal storage in synoviocytes and chondrocytes following 6 months of IA-rhIDUA demonstrated significant reduction compared to tissues at baseline, and saline-treated tissues at study-end. Mean joint synovial GAG levels in IA-rhIDUA joints was 8.62 ± 5.86 μg/mg dry weight and 21.6 ± 10.4 μg/mg dry weight in control joints (60% reduction). Cartilage heparan sulfate was also reduced in the IA-rhIDUA joints (113 ± 39.5 ng/g wet weight) compared to saline-treated joints (142 ± 56.4 ng/g wet weight). Synovial macrophage infiltration, which was present in all joints at baseline, was abolished in rhIDUA-treated joints only. Conclusions Intra-articular rhIDUA is well-tolerated and safe in the canine MPS I animal model. Qualitative and quantitative assessments indicate that IA-rhIDUA successfully reduces tissue and cellular GAG storage in synovium and articular cartilage, including cartilage deep to the articular surface, and eliminates inflammatory macrophages from synovial tissue. Clinical Relevance The MPS I canine IA-rhIDUA results suggest that clinical studies should be performed to determine if IA-rhIDUA is a viable approach to ameliorating refractory orthopedic disease in human MPS I.
    Molecular Genetics and Metabolism 01/2014; · 2.83 Impact Factor