Article

Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial.

Montreal General Hospital and McGill University, Québec, Canada.
Journal of Bone and Joint Surgery - British Volume (Impact Factor: 2.69). 10/1999; 81(5):907-14. DOI: 10.1302/0301-620X.81B5.9283
Source: PubMed

ABSTRACT We have studied the characteristics of bone ingrowth of a new porous tantalum biomaterial in a simple transcortical canine model using cylindrical implants 5 x 10 mm in size. The material was 75% to 80% porous by volume and had a repeating arrangement of slender interconnecting struts which formed a regular array of dodecahedron-shaped pores. We performed histological studies on two types of material, one with a smaller pore size averaging 430 microm at 4, 16 and 52 weeks and the other with a larger pore size averaging 650 microm at 2, 3, 4, 16 and 52 weeks. Mechanical push-out tests at 4 and 16 weeks were used to assess the shear strength of the bone-implant interface on implants of the smaller pore size. The extent of filling of the pores of the tantalum material with new bone increased from 13% at two weeks to between 42% and 53% at four weeks. By 16 and 52 weeks the average extent of bone ingrowth ranged from 63% to 80%. The tissue response to the small and large pore sizes was similar, with regions of contact between bone and implant increasing with time and with evidence of Haversian remodelling within the pores at later periods. Mechanical tests at four weeks indicated a minimum shear fixation strength of 18.5 MPa, substantially higher than has been obtained with other porous materials with less volumetric porosity. This porous tantalum biomaterial has desirable characteristics for bone ingrowth; further studies are warranted to ascertain its potential for clinical reconstructive orthopaedics.

0 Bookmarks
 · 
152 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metals have been used as biostructural materials because of outstanding mechanical reliability. However, low bioactivity and high stiffness in biological environments have been major issues of metals, causing stress shielding effects or foreign body reactions after implantation. Therefore, in this study, densified porous titanium has been introduced to achieve comparable mechanical properties to hard tissues and bioactivity that promote a better interface between the implant and bone. Porous titanium scaffolds were successfully fabricated through dynamic freezing casting, and were densified, controlling the degree of densification by applied strain. During densification, structural integrity of porous titanium was well maintained without any mechanical deterioration, exhibiting good pore connectivity and large surface area. Densified porous titanium possesses two important features that have not been achieved by either dense titanium or porous titanium: 1) mechanical tunability of porous scaffolds through densification that allows scaffolds to be applied ranging from highly porous fillers to dense load-bearing implants and 2) improved bioactivity through bioactive coating that is capable of sustainable release through utilizing high surface area and pore connectivity with controllable tortuosity. This simple, but effective post-fabrication process of porous scaffolds has great potential to resolve unmet needs of biometals for biomedical applications.
    Biomaterials 10/2014; · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Defining the most adequate architecture of a bone substitute scaffold is a topic that has received much attention over the last 40 years. However, contradictory results exist on the effect of grain size and microporosity. Therefore, the aim of this study was to determine the effect of these two factors on the in vivo behaviour of β-tricalcium phosphate (β-TCP) scaffolds. For that purpose, β-TCP scaffolds were produced with roughly the same macropore size (≈ 150 μm), and porosity (≈ 80 %), but two levels of microporosity (low: 10 % / high: ≈ 25 %) and grain size (small: 1.3 μm /large: ≈ 3.3 μm). The sample architecture was characterised extensively using materialography, Hg porosimetry, micro-computed tomography (μCT), and nitrogen adsorption. The scaffolds were implanted for 2, 4 and 8 weeks in a cylindrical 5-wall cancellous bone defect in sheep. The histological, histomorphometrical and μCT analysis of the samples revealed that all four scaffold types were almost completely resorbed within 8 weeks and replaced by new bone. Despite the three-fold difference in microporosity and grain size, very few biological differences were observed. The only significant effect at p < 0.01 was a slightly faster resorption rate and soft tissue formation between 4 and 8 weeks of implantation when microporosity was increased. Past and present results suggest that the biological response of this particular defect is not very sensitive towards physico-chemical differences of resorbable bone graft substitutes. As bone formed not only in the macropores but also in the micropores, a closer study at the microscopic and localised effects is necessary.
    European cells & materials 01/2014; 28:299-319. · 4.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Calcium phosphate (CaP) materials are widely used in various biomedical areas such as drug/gene delivery and bone repair/tissue engineering. In this study, amorphous CaP nanospheres synthesized by a simple co-precipitation method are used to prepare the CaP-polylactide (CaP-PLA) composite. Then, the as-prepared CaP-PLA composite is used to coat tantalum (Ta) plates and porous scaffolds. Compared with bare Ta plate, CaP-PLA coated Ta plates show a high performance of surface biomineralization in simulated body fluid (SBF). In addition, the hydrophilicity of the CaP-PLA coated Ta plates is significantly improved. CaP-PLA coated Ta plates with bovine serum albumin (BSA) are prepared and used for the investigation of BSA release in vitro. The experimental results indicate a sustained BSA release property and simultaneous biomineralization of the as-prepared BSA-containing CaP-PLA coated Ta plates. Furthermore, CaP-PLA coated Ta scaffolds are favorable for the human osteoblast-like MG63 cells adhesion and spreading. The vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-containing CaP-PLA coated porous Ta scaffolds are used for the study of rabbit subchondral bone defect repair, covering with autogeneic periosteums. The as-prepared CaP-PLA composite coated Ta scaffolds are useful to guide the bone regeneration in vivo.
    Colloids and surfaces B: Biointerfaces 09/2014; · 4.28 Impact Factor

Full-text (2 Sources)

Download
86 Downloads
Available from
May 22, 2014