Crystallization and preliminary diffraction analysis of the HincII restriction endonuclease-DNA complex

Department of Chemistry, Interdepartmental Program in Biochemistry and Molecular Biology, University of California at Santa Barbara, Santa Barbara CA 93106-9510, USA.
Acta Crystallographica Section D Biological Crystallography (Impact Factor: 2.67). 12/1999; 55(Pt 11):1943-5. DOI: 10.1107/S0907444999010574
Source: PubMed


Crystals of the 60 kDa dimeric HincII restriction enzyme bound to a 12 base-pair dyad-symmetric duplex DNA carrying the specific 5'-GTCGAC recognition site have been obtained. Crystals grew by hanging-drop vapor diffusion from solutions containing polyethylene glycol 4000 as precipitating agent. The rod-shaped crystals belong to space group I222 (or I2(1)2(1)2(1)), with unit-cell dimensions a = 66.9, b = 176.7, c = 256.0 A. There are most likely to be two dimeric complexes in the asymmetric unit. A complete native data set has been collected from a high-energy synchrotron source to a resolution of 2.5 A at 100 K, with an R(merge) of 4.8%.

Download full-text


Available from: Ira Schildkraut, Oct 03, 2015
23 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The crystal structure of the HincII restriction endonuclease-DNA complex shows that degenerate specificity for blunt-ended cleavage at GTPyPuAC sequences arises from indirect readout of conformational preferences at the center pyrimidine-purine step. Protein-induced distortion of the DNA is accomplished by intercalation of glutamine side chains into the major groove on either side of the recognition site, generating bending by either tilt or roll at three distinct loci. The intercalated side chains propagate a concerted shift of all six target-site base pairs toward the minor groove, producing an unusual cross-strand purine stacking at the center pyrimidine-purine step. Comparison of the HincII and EcoRV cocrystal structures suggests that sequence-dependent differences in base-stacking free energies are a crucial underlying factor mediating protein recognition by indirect readout.
    Nature Structural Biology 02/2002; 9(1):42-7. DOI:10.1038/nsb741
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The three-dimensional X-ray crystal structures of HincII bound to cognate DNA containing GTCGAC and Mn(2+) or Mg(2+), at 2.50A and 2.95A resolution, respectively, are presented. In both structures, the DNA is found cleaved, and the positions of the active-site groups, cleaved phosphate group, and 3' oxygen atom of the leaving group are in very similar positions. Two highly occupied Mn(2+) positions are found in each active site of the four crystallographically independent subunit copies in the HincII/DNA/Mn(2+) structure. The manganese ion closest to the previously identified single Ca(2+) position of HincII is shifted 1.7A and has lost direct ligation to the active-site aspartate residue, Asp127. A Mn(2+)-ligated water molecule in a position analogous to that seen in the HincII/DNA/Ca(2+) structure, and proposed to be the attacking nucleophile, is beyond hydrogen bonding distance from the active-site lysine residue, Lys129, but remains within hydrogen bonding distance from the proRp oxygen atom of the phosphate group 3' to the scissile phosphate group. In addition, the position of the cleaved phosphate group is on the opposite side of the axis connecting the two metal ions relative to that found in the BamHI/product DNA/Mn(2+) structure. Mechanistic implications are discussed, and a model for the two-metal-ion mechanism of DNA cleavage by HincII is proposed.
    Journal of Molecular Biology 11/2004; 343(4):833-49. DOI:10.1016/j.jmb.2004.08.082 · 4.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The 2.8 A crystal structure of the type II restriction endonuclease HincII bound to Ca(2+) and cognate DNA containing GTCGAC is presented. The DNA is uncleaved, and one calcium ion is bound per active site, in a position previously described as site I in the related blunt cutting type II restriction endonuclease EcoRV [Horton, N. C., Newberry, K. J., and Perona, J. J. (1998) Proc. Natl. Acad. Sci. U.S.A. 95 (23), 13489-13494], as well as that found in other related enzymes. Unlike the site I metal in EcoRV, but similar to that of PvuII, NgoMIV, BamHI, BglII, and BglI, the observed calcium cation is directly ligated to the pro-S(p) oxygen of the scissile phosphate. A calcium ion-ligated water molecule is well positioned to act as the nucleophile in the phosphodiester bond cleavage reaction, and is within hydrogen bonding distance of the conserved active site lysine (Lys 129), as well as the pro-R(p) oxygen of the phosphate group 3' of the scissile phosphate, suggesting possible roles for these groups in the catalytic mechanism. Kinetic data consistent with an important role for the 3'-phosphate group in DNA cleavage by HincII are presented. The previously observed sodium ion [Horton, N. C., Dorner, L. F., and Perona, J. J. (2002) Nat. Struct. Biol. 9, 42-47] persists in the active sites of the Ca(2+)-bound structure; however, kinetic data show little effect on the single-turnover rate of DNA cleavage in the absence of Na(+) ions.
    Biochemistry 11/2004; 43(42):13256-70. DOI:10.1021/bi0490082 · 3.02 Impact Factor
Show more