Attenuated sensitivity to neuroactive steroids in gamma-aminobutyrate type A receptor delta subunit knockout mice.

Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/1999; 96(22):12905-10. DOI: 10.1073/pnas.96.22.12905
Source: PubMed

ABSTRACT gamma-Aminobutyric acid (GABA) type A receptors mediate fast inhibitory synaptic transmission and have been implicated in responses to sedative/hypnotic agents (including neuroactive steroids), anxiety, and learning and memory. Using gene targeting technology, we generated a strain of mice deficient in the delta subunit of the GABA type A receptors. In vivo testing of various behavioral responses revealed a strikingly selective attenuation of responses to neuroactive steroids, but not to other modulatory drugs. Electrophysiological recordings from hippocampal slices revealed a significantly faster miniature inhibitory postsynaptic current decay time in null mice, with no change in miniature inhibitory postsynaptic current amplitude or frequency. Learning and memory assessed with fear conditioning were normal. These results begin to illuminate the novel contributions of the delta subunit to GABA pharmacology and sedative/hypnotic responses and behavior and provide insights into the physiology of neurosteroids.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GABAA receptors are the main fast inhibitory neurotransmitter receptors in the mammalian brain, and targets for many clinically important drugs widely used in the treatment of anxiety disorders, insomnia and in anesthesia. Nonetheless, there are significant risks associated with the long-term use of these drugs particularly related to development of tolerance and addiction. Addictive mechanisms of GABAA receptor drugs are poorly known, but recent findings suggest that those drugs may induce aberrant neuroadaptations in the brain reward circuitry. Recently, benzodiazepines, acting on synaptic GABAA receptors, and modulators of extrasynaptic GABAA receptors (THIP and neurosteroids) have been found to induce plasticity in the ventral tegmental area (VTA) dopamine neurons and their main target projections. Furthermore, depending whether synaptic or extrasynaptic GABAA receptor populations are activated, the behavioral outcome of repeated administration seems to correlate with rewarding or aversive behavioral responses, respectively. The VTA dopamine neurons project to forebrain centers such as the nucleus accumbens and medial prefrontal cortex, and receive afferent projections from these brain regions and especially from the extended amygdala and lateral habenula, forming the major part of the reward and aversion circuitry. Both synaptic and extrasynaptic GABAA drugs inhibit the VTA GABAergic interneurons, thus activating the VTA DA neurons by disinhibition and this way inducing glutamatergic synaptic plasticity. However, the GABAA drugs failed to alter synaptic spine numbers as studied from Golgi-Cox-stained VTA dendrites. Since the GABAergic drugs are known to depress the brain metabolism and gene expression, their likely way of inducing neuroplasticity in mature neurons is by disinhibiting the principal neurons, which remains to be rigorously tested for a number of clinically important anxiolytics, sedatives and anesthetics in different parts of the circuitry.
    Frontiers in Pharmacology 11/2014; 5:256. DOI:10.3389/fphar.2014.00256
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GABAergic inhibition displays rich functional diversity throughout the CNS, which arises from variations in the nature of inputs, subunit composition, subcellular localization of receptors and synapse geometry, or reuptake mechanisms. In the spinal dorsal horn (SDH), GABAA and glycine receptors play a major role in the control of excitability and accuracy of nociceptive processing. Identifying which components shape the properties of the inhibitory synapses in different cell types is necessary to understand how nociceptive information is integrated. To address this, we used transgenic mice where inhibitory interneurons express GAD65-EGFP. We found that GABAA, but not glycine receptor-mediated evoked IPSCs displayed slower kinetics in EGFP+ vs. EGFP- interneurons. GABAA miniature IPSC decay kinetics showed a large variability in both populations, however the distribution of decays differed between EGFP+ and EGFP- interneurons. The range of mIPSC decay kinetics observed was replicated in experiments using rapid application of GABA on outside-out patches taken from SDH neurons in slices. Furthermore, GABAA decay kinetics were not affected by uptake blockers and were not different in mice lacking δ or α5 subunits, indicating that intrinsic channel properties likely underlie the heterogeneity. To identify whether other α subunits shape the various kinetic properties observed we took advantage of knock-in mice carrying point mutations in either the α1, α2, or α3 subunits rendering Ro 15-4513 a selective agonist at the benzodiazepine modulatory site. We found that α1 and α2 subunit underlie the fast decaying component of IPSCs while the slow component is determined by the α3 subunit. The differential distribution of GABAA subunits at inhibitory synapses thus sculpts the heterogeneity of the SDH inhibitory circuitry. This diversity of inhibitory elements can be harnessed to selectively modulate different components of the spinal nociceptive circuitry for therapeutic interventions.
    Frontiers in Cellular Neuroscience 12/2014; 8:424. DOI:10.3389/fncel.2014.00424 · 4.18 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown that the pharmacologic effects of GABAergic drugs and the postsynaptic phasic GABAAergic inhibitory responses in the anterior part of the rat substantia nigra pars reticulata (SNRA) are age- and sex-specific. Here, we investigate whether there are age- and sex-related differences in the expression of the δ GABAA receptor (GABAAR) subunit and GABAAR mediated tonic currents. We have used δ-specific immunochemistry and whole cell patch clamp to study GABAAR mediated tonic currents in the SNRA of male and female postnatal day (PN) PN5-9, PN11-16, and PN25-32 rats. We observed age-related decline, but no sex-specific changes, in bicuculline (BIM) sensitive GABAAR tonic current density, which correlated with the decline in δ subunit in the SNRA between PN15 and 30. Furthermore, we show that the GABAAR tonic currents can be modified by muscimol (GABAAR agonist; partial GABACR agonist), THIP (4,5,6,7-tetrahydroisoxazolo (5,4-c)pyridin-3-ol: α4β3δ GABAARs agonist and GABACR antagonist), and zolpidem (α1-subunit selective GABAAR agonist) in age- and sex-dependent manner specific for each drug. We propose that the emergence of the GABAAR-sensitive anticonvulsant effects of the rat SNRA during development may depend upon the developmental decline in tonic GABAergic inhibition of the activity of rat SNRA neurons, although other sex-specific factors are also involved.
    Neurochemical Research 02/2015; DOI:10.1007/s11064-015-1523-3 · 2.55 Impact Factor

Full-text (2 Sources)

Available from
May 31, 2014