Article

Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors

IBM T. J. Watson Research Center, Post Office Box 218, Yorktown Heights, NY, 10598, USA.
Science (Impact Factor: 31.48). 11/1999; 286(5441):945-7. DOI: 10.1126/science.286.5441.945
Source: PubMed

ABSTRACT Organic-inorganic hybrid materials promise both the superior carrier mobility of inorganic semiconductors and the processability of organic materials. A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated. Hybrids based on the perovskite structure crystallize from solution to form oriented molecular-scale composites of alternating organic and inorganic sheets. Spin-coated thin films of the semiconducting perovskite (C(6)H(5)C(2)H(4)NH(3))(2)SnI(4) form the conducting channel, with field-effect mobilities of 0.6 square centimeters per volt-second and current modulation greater than 10(4). Molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin-film transistors.

Full-text

Available from: Christos Dimitrakopoulos, Jun 02, 2015
1 Follower
 · 
200 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thermally evaporated fullerene C60 porous films served as templates for a hybrid (molecular-inorganic) disordered blend formation. C60 films were covered with zinc oxide (ZnO) grown by atomic layer deposition. ZnO filled every pore in the C60 layer which led to the formation of C60–ZnO films with separate and distinguishable phases of C60 and ZnO constituents. Morphological, structural, optical, and electrical properties of the so-obtained films were investigated. Deposition of ZnO polycrystalline films on C60 porous layers resulted in the formation of ZnO with additional structural defects, compared to the films grown on planar substrates, which affected the electrical transport in the ZnO–C60 layers.
    Journal of Materials Science 06/2015; 50(11). DOI:10.1007/s10853-015-8970-8 · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this review we examine recent theoretical investigations on 2D and 3D hybrid perovskites (HOP) that combine classical solid-state physics concepts and density functional theory (DFT) simulations as a tool for studying their optoelectronic properties. Such an approach allows one to define a new class of semiconductors, where the pseudocubic high temperature perovskite structure plays a central role. Bloch states and k.p Hamiltonians yield new insight into the influence of lattice distortions, including loss of inversion symmetry, as well as spin-orbit coupling. Electronic band folding and degeneracy, effective masses and optical absorption are analyzed. Concepts of Bloch and envelope functions, as well as confinement potential are discussed in the context of layered HOP and 3D HOP heterostructures. Screening and dielectric confinements are important for room temperature optical properties of 3D and layered HOP, respectively. Non-radiative Auger effects are analyzed for the first time close to the electronic band gap of 3D hybrid perovskites.
    The Journal of Physical Chemistry C 04/2015; DOI:10.1021/acs.jpcc.5b00695 · 4.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new variant of the classic pulsed laser deposition (PLD) process is introduced as a room-temperature dry process for the growth and stoichiometry control of hybrid perovskite films through the use of nonstoichiometric single target ablation and off-axis growth. Mixed halide hybrid perovskite films nominally represented by CH3NH3PbI3–xAx (A = Cl or F) are also grown and are shown to reveal interesting trends in the optical properties and photoresponse. Growth of good quality lead-free CH3NH3SnI3 films is also demonstrated, and the corresponding optical properties are presented. Finally, perovskite solar cells fabricated at room temperature (which makes the process adaptable to flexible substrates) are shown to yield a conversion efficiency of about 7.7%.
    The Journal of Physical Chemistry C 04/2015; 119(17):9177-9185. DOI:10.1021/acs.jpcc.5b02561 · 4.84 Impact Factor