Antimicrobial susceptibility testing of Helicobacter pylori in a large multicenter trial: the MACH 2 study.

Laboratoire de Bactériologie, Hôpital Pellegrin, Bordeaux, France. francis.mé
Antimicrobial Agents and Chemotherapy (Impact Factor: 4.45). 11/1999; 43(11):2747-52.
Source: PubMed

ABSTRACT Culture and susceptibility testing of Helicobacter pylori strains was performed in a large multinational, multicenter randomized clinical trial. Culture was carried out on gastric biopsy samples obtained from 516 patients at entry and had a sensitivity of 99% when the [(13)C]urea breath test was used as a reference. Susceptibility testing was performed for clarithromycin and metronidazole on 485 strains by an agar dilution method and the epsilometer test (Etest) and for amoxicillin by an agar dilution method only. Resistance to clarithromycin (>1 microgram/ml) was found in 3% of the H. pylori strains, with a perfect correlation between Etest and agar dilution methods. Resistance to metronidazole (>8 microliter/ml) was found in 27% of the strains by agar dilution, but there were important discrepancies between it and the Etest method. No resistance to amoxicillin was found. The logarithms of the MICs of the three antibiotics against susceptible strains had a distribution close to normal. The impact of resistance was tested in the four arms of the trial. There were not enough clarithromycin-resistant strains to evaluate the impact of resistance on the cure rate of clarithromycin-based regimens. For metronidazole-resistant strains, the impact noted in the clarithromycin-metronidazole arm was partially overcome when omeprazole was added (76% eradication for resistant strains versus 95% for susceptible strains). Secondary resistance to clarithromycin occurred in strains from 12 of 105 patients (11.4%) after the failure of a clarithromycin-based regimen to effect eradication. The detection of point mutations in clarithromycin-resistant strains was performed by a combination of PCR and restriction fragment length polymorphism. Mutations (A2142G and 2143G) were found in all strains tested except one. This study stresses the importance of performing susceptibility tests in clinical trials in order to explain the results of different treatments.

  • Source
    Science against microbial pathogens: communicating current research and technological advances (Microbiology Book Series, number # 3), Edited by A. Méndez-Vilas, 01/2011: chapter Helicobacter pylori resistance to antibiotics; Formatex.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resistance to metronidazole, a key component of therapies against Helicobacter pylori, is common in clinical isolates. Resistance generally requires inactivation of rdxA (HP0954), and sometimes also frxA (HP0642), two related nitroreductase genes. Here we studied the effect of resistance to metronidazole on fitness of the gastric pathogen H. pylori. The effect of metronidazole resistance for H. pylori in culture was assessed first by looking at colonies formed by freshly constructed mutant derivatives of H. pylori strain 26695. Mutations resulting in metronidazole resistance caused premature death of H.pylori in stationary phase, but had no significant effect on early exponential growth. The effect of nitroreductase deficiencies on fitness in vivo was tested by infecting C57BL/6 mice with 1:1 mixtures of SS1 wild type and its isogenic metronidazole resistant derivatives. Inactivation of rdxA caused an inability to colonize mice in SS1 H. pylori strain. Derivatives of a metronidazole resistant strain that survived better in stationary phase, although remaining metronidazole resistant, could again colonize mice. In conclusion, metronidazole resistance diminishes H. pylori's fitness, but their costs can be suppressed by additional mutation.
    01/2005; 15(6). DOI:10.5352/JLS.2005.15.6.955
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study evaluates in vivo and in vitro anti-Helicobacter pylori (H. pylori) efficacy of silver nanoparticles (Ag-NPs) prepared via a cost-effective green chemistry route wherein Peganum harmala L. seeds extract was used as a reducing and capping agent.The structural features, as elucidated by surface plasmon resonance spectrophotometry, transmission electron microscopy, and powder X-ray diffraction spectroscopy, revealed the Ag-NPs synthesized to be polydispersed in nature and spherical in shape with 5–40nm size. A typical Ag-NPs suspension (S5), with size being 15 nm, when tested in vitro against forty-two local isolates and two reference strains, showed a considerable anti-H. pylori activity. In case of in vivo trial against H. pylori induced gastritis, after oraladministration of 16mg/kg body weight of S5 for seven days, a complete clearance was recorded in male albino rates. In comparative time-killing kinetics, S5 exhibited dose- and time-dependent anti-H. pylori activity that was almost similar to tetracycline and clarithromycin, less than amoxicillin, but higher than metronidazole. Furthermore, S5 was found to be an equally effective anti-H. pylori agent at low (≤4) and high pH with no drug resistance observed even up to 10 repeated exposures while a significant drug resistance was recorded for most of the standard drugs employed. The present results revealed the potential of the synthesized Ag-NPs as safer bactericidal agents for the treatment of H. pylori induced gastritis.
    Bioinorganic Chemistry and Applications 08/2014; 2014:1-11. DOI:10.1155/2014/135824 · 1.66 Impact Factor

Full-text (2 Sources)

Available from
May 15, 2014