Fat transfer and energetics during lactation in the hooded seal: the roles of tissue lipoprotein lipase in milk fat secretion and pup blubber deposition.

Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada.
Journal of Comparative Physiology B (Impact Factor: 2.53). 10/1999; 169(6):377-90. DOI: 10.1007/s003600050234
Source: PubMed

ABSTRACT Hooded seals (Cystophora cristata) lactate for 3.6 days during which females simultaneously fast and transfer large amounts of energy to their pups through fat-rich milk. Pups grow rapidly, principally due to blubber deposition. Lipoprotein lipase (LPL), the primary enzyme responsible for tissue uptake of triglyceride fatty acids, may strongly influence both maternal milk fat secretion and pup blubber deposition. We measured the energetic costs of lactation (using hydrogen isotope dilution, 3H2O), milk composition, prolactin, and LPL activity (post-heparin plasma LPL [PH LPL], blubber, mammary gland and milk; U) in six females. PH LPL and blubber LPL were measured in their pups. Females depleted 216.3 of body energy and fat accounted for 59% of maternal mass loss and 90% of postpartum body energy loss, but maternal body composition changed little. Maternal blubber LPL was negligible (0.0-0.2 U), while mammary LPL was elevated (1.8-2.5 U) and was paralleled by changes in prolactin. Estimated total mammary LPL activity was high (up to 20,000 U.animal-1) effectively favoring the mammary gland for lipid uptake. Levels of total blubber LPL in pups increased seven-fold over lactation. Pups with higher PH LPL at birth had greater relative growth rates (P = 0.025). Pups with greater blubber stores and total blubber LPL activity had elevated rates of fat deposition (P = 0.035).

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many pinniped species perform a specific dive type, referred to as a 'drift dive', where they drift passively through the water column. This dive type has been suggested to function as a resting/sleeping or food processing dive, and can be used as an indication of feeding success by calculating the daily change in vertical drift rates over time, which reflects the relative fluctuations in buoyancy of the animal as the proportion of lipids in the body change. Northwest Atlantic hooded seals perform drift dives at regular intervals throughout their annual migration across the Northwest Atlantic Ocean. We found that the daily change in drift rate varied with geographic location and the time of year and that this differed between sexes. Positive changes in buoyancy (reflecting increased lipid stores) were evident throughout their migration range and although overlapping somewhat, they were not statistically associated with high use areas as indicated by First Passage Time (FPT). Differences in the seasonal fluctuations of buoyancy between males and females suggest that they experience a difference in patterns of energy gain and loss during winter and spring, associated with breeding. The fluctuations in buoyancy around the moulting period were similar between sexes.
    PLoS ONE 07/2014; 9(7). DOI:10.1371/journal.pone.0103072 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about the mechanisms that allow capital breeders to rapidly mobilize large amounts of body reserves. Northern elephant seals (Mirounga angustirostris) utilize fat reserves for maternal metabolism and to create high fat milk for the pup. Hormone-sensitive lipase (HSL) has been hypothesized to be an important lipolytic enzyme in fasting seals, but the activity of HSL and adipose triglyceride lipase (ATGL) has not been quantified in fasting adult seals, nor has their relationship to milk lipid content been assessed. Blubber and milk samples were obtained from 18 early lactation and 19 late lactation females, as well as blubber from five early and five late molting female seals. Blubber lipolytic activity was assessed with radiometric assays. HSL activity was negligible in seal blubber at all fasting stages. Total triglyceride lipase activity was stable among early and late lactation and early molt but increased in late molting seals. Relative abundance of ATGL protein increased across fasting, but neither activity nor relative protein levels were related to circulating nonesterified fatty acids or milk lipid content, suggesting the possibility of other regulatory pathways between lipolytic activity and milk lipid content. These results demonstrate that HSL is not the primary lipolytic enzyme in fasting adult female seals and that ATGL contributes more to lipolysis than HSL.
    Physiological and Biochemical Zoology 05/2015; 88(3):284-294. DOI:10.1086/680079 · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cold environmental conditions and small body size often promote heat loss and may create thermoregulatory challenges for marine mammals born in polar regions. However, among polar-born phocid seal species there are variations in physical attributes and environmental conditions at birth, allowing for an interesting contrast in thermoregulatory strategy. We compared aspects of thermoregulatory strategies including morphometrics, sculp attributes (conductivity and resistance), nonshivering thermogenesis (NST via uncoupling protein 1; UCP1), and muscle thermogenesis (via enzyme activity) in neonatal harp (Pagophilus groenlandicus), hooded (Cystophora cristata), and Weddell seals (Leptonychotes weddellii). Harp seals are the smallest at birth (9.8±0.7kg), rely on lanugo (82.49±3.70% of thermal resistance), and are capable of NST through expression of UCP1 in brown adipose tissue (BAT). In contrast, hooded seal neonates (26.8±1.3kg) have 2.06±0.23cm of blubber, accounting for 38.19±6.07% of their thermal resistance. They are not capable of NST, as UCP1 is not expressed. The large Weddell seal neonates (31.5±4.9kg) rely on lanugo (89.85±1.25% of thermal resistance) like harp seals, but no evidence of BAT was found. Muscle enzyme activity was highest in Weddell seal neonates, suggesting they rely primarily on muscle thermogenesis. Similar total thermal resistance, combined with the marked differences in thermogenic capacity of NST and ST among species, strongly supports the idea that thermoregulatory strategy in neonate phocids is more closely tied to pups' surface area to volume ratio (SA:V) and potential for early water immersion rather than mass and ambient environmental conditions.
    Comparative Biochemistry and Physiology - Part A Molecular & Integrative Physiology 08/2014; 178. DOI:10.1016/j.cbpa.2014.08.006 · 2.37 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014